
, . v, ,I

NASA Contractor Report 3010

A Fault-Tolerant Multiprocessor
Architecture for Aircraft

Voluine I

T. B. Smith, A. L. Hopkins, W. Taylor
R. A. Ausrotas, J. H. Lala,
L. D. Hanley, and J. H. Martin

CONTRACT NASl-13782
JULY 1978

TECH LIBRARY KAFB, NM

NASA Contractor Repoti 3010

A Fault-Tolerant Multiprocessor
Architecture for Aircraft

Volume I

T. B. Smith, A. L. Hopkins, W. Taylor
R. A. Ausrotas, J. H. Lala,
L. D. Hanley, and J. H. Martin
The Charles Stark Draper Laboratwy, Inc.
Cambridge, Massachsetts

Prepared for
Langley Research Center
under Contraci NASl-13782

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

.

1978

TABLE OF CONTENTS FOR VCLUME I

INTRODUCTION

CHAPTER 1.

1.1
1.2
1.3
1.4

SYSTEM CONTEXT

Sensors and Effecters
Local Processing
Data Communications and Information System Structure
Central Computing and System Management

4

4

8

10

14

CHAPTER 2. THE ARCHITECTURE OF A PARALLEL-HYBRID RF,DUNDANT
MULTIPROCESSOR

Nominal Organization
Re,dundant Organization
Synchronization
Fault Detection, Identification, and Recovery

17

2.1
2.2
2.3
2.4

17

22

28

30

CHAPTER 3. ASSESSMENT OF THE IMPACT ON COMMERCIAL AIRCRAFT 34

3.1 Functional Applications 34

3.2 Maintenance Considerations 52

3.3 Operational Considerations 53

3.4 Industry Visits 54

3.5 Summary 56

CHAPTER 4. MALFUNCTION TOLERANCE 57

4.1 Malfunction Sources
4.2 Malfunction Consequences
4.3 Tolerance Renewal

57

59

60

63 4.4 . Reliability and Maintenance

Page

1

iii

Page

CHAPTER 5. A RELIABILITY AND AVAILABILITY STUDY OF THE
FAULT-TOLERANT MULTIPROCESSOR 65

5.1 Evaluation of Existing Reliability Programs 65
5.2 First Markov Process Model of the Multiprocessor 66
5.3 Second Markov Process Model of the Multiprocessor 78
5.4 Combinatorial Reliability Model of the Multiprocessor 83
5.5 l System Failures Due to BGU Enable Failures 89
5.6 System Availability/Dispatch Reliability 92
5.7 Summary 95

CHAPTER 6. AN APPROACH TO SOFTWARE RELIABILITY 100

6.1 Introduction 100
6.2 Higher Order Software Methodology 100
6.3 Implementation 115
6.4 Justification 118
6.5 Conclusion 123
6.6 Application to Software 124

CHAPTER 7. SEMICONDUCTOR TECHNOLOGY 130

7.1 Candidate Components 130

7.2 Reliability Goals 132

7.3 Component Selection 133

7.4 Reliability Assurance 136

7.5 Recommendation 140

CHAPTER 8

8.1
8.2

PACKAGING CONSIDERATIONS 142

Packaging Philosophy 142

Packaging the Fault-Tolerant Computer 153

CHAPTER 9 MULTIPROCESSOR SIZING STUDY 168

9.1 System Partitioning 169

9.2 Program Execution Parameters 170
9.3 Function Parameters 172
9.4 Parametric Models 175

9.5 Problems of Resource Sharing 182

9.6 Three Size Estimates 183

9.7 Summary 185

CHAPTER 10. DEMONSTRATION OF AN EXPERIMENTAL FAULT-TOLERANT
MULTIPROCESSOR EMULATION 187

10.1 Experimental Goals of the Demonstration 187

10.2 Experimental Results 191

10.3 Conclusions.and Recommendations 203

APPENDIX I

APPENDIX II

Page

204

214

REFERENCES 219

V

LIST OF ILLUSTRATIONS

FIGURE

1.1 Information Model of Aircraft

1.2 Examples of Contemporary Redundant Independent Subsystems

1.3 Simplified Representation of Integrated Information System

1.4 Data Communications Structures

Page

5

6

11

12

2.1 Multiprocessor Functional Form 19

2.2 Simplified Physical Diagram of Multiprocessor 23

2.3 Bus Guardian Connections 25

2.4 Fault-Tolerant Clocking System 29

3.1 Potential Impact on Design 50

3.2 Potential Impact on Design 51

4.1 Idealized Tolerance Renewal 62

4.2 Fault Latency Model 62

5.1

5.2

5.3

5.4

5.5

The Number of States in a General Markov Model

The Markov Model

A Section of the Transition Diagram

Effect of Time Step Variation on Markov Model Solution

Prob. of Failure Due to Lack of Coverage and Its
Rate of Change

67

69

70

76

5.6 Failure Rate Factor A

5.7 Recovery Factor p

5.8 Component Failure Rate Factor

77

79

80

81

Vi

FIGURE

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

Component Recovery Rate Factor

Simplified Cards Markov Model

Relative Contributions to System Failure State

Prob. of System Failure Due to Lack of Coverage

Determination of Number of Spares for Each Type of Module

Prob. of Failure Due to Exhaustionof Spares

System Failure Prob. Due to BGU Failures in Enable Mode

Probability of Spare Module Exhaustion, Example

Probability of System Failure

Page

82

84

85

86

88

90

93

96

97

6.1 First Level of Decomposition 126

6.2 Second Level 126

6.3 Alternate Structure 126

6.4 Binary Tree Structure 127

6.5 Further Refinement 127

7.1 Technology Family Tree 135

7.2 The Analysis of Data from Accelerated Stress Tests 137

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Standard Module

Brassboard Standard Module

Brassboard Fault-Tolerant Computer Case

Motherboard Signal Bus Structure

Production Module

Schematic Section of Production Case

Production Case Design Using One and One-Half
ATR Box Format

Demonstration System Diagram
Pitch Control
Roll Control
Yaw Damping

158

159

161

163

165

;66

167

10.1
10.2
10.3
10.4

192
199
200
201

vii

LIST OF TABLES

TABLE

3.1

3.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

7.1

7.2

8.1

8.2

9.1

9.2

Growth of Flight Guidance Modes in Douglas Commercial
Airplanes (Typical Original Model)

Functional Criticality According to Mission Phase

Failure Transition Rates

Recovery Transition Rates

Baseline Parameter Values

Baseline Parameter Values

Equipment Failure Probabilities

Initial Configuration so that at least 11 Processors,
5 Memory Units and 3 Buses will Survive with a Prob.
PS After 300 Hours

Analysis of System Failures Due to BGU Failures in
Enable Mode

IC Internal Problems Detected Prior to Production Buys

Methods of Reliability Assurance

Baseline Computer Architecture

List of Motherboard Wiring

Minimum, Medium, and Maximum Estimates for Speed and
Bandwidth Parameters

178

Three Multiprocessor Size Estimates 184

Page

35

37

71

72

91

91

94

94

98

134

139

147

147

INTRODUCTION

This volume is a twelve-month interim report on a continuing
study of a fault-tolerant multiprocessor architecture for aircraft,
sponsored by the NASA Langley Research Center, Flight Instrumentation
Division. The Technical Contract Monitor was Mr. Nicholas D. Murray.
The work reported here-was performed in the NASA/Army Department of the
Draper Laboratory, with support from the Computer Science Division and
the MIT Flight Transportation Laboratory. The project engineer was
Dr. T. Basil Smith, III. The work period was May, 1975 to April, 1976.

A fault-tolerant multiprocessor architecture evolved at the
Draper Laboratory under various sponsors from 1966 to the present time.
This architecture, together with a comprehensive information system
architecture, has important potential for future aircraft applications.
This report is directed at the preliminary definition and assessment of
a suitable multiprocessor architecture for such applications. The
architectureis strongly driven by a requirement for extremely remote
probability of system failure. Throughout this report, it is
hypothesized that the computer's failure rate will be designed below
lo-g failures per hour in flights of up to ten hours duration, with a
preferred goal of 10 -10 failures per hour.

Summary of Conclusions

The following important conclusions have developed during and/or
as a result of the work reported here.

The architectural principles of the multiprocessor have been
demonstrated in an experimental configuration with a commercial aircraft
simulation. The basic fault detection, diagnosis, and reconfiguration
strategies are operational, and have undergone at least a superficial
validation.

Future aircraft improvements in performance and economy are
strongly contingent on the development of dependable information
processing systems, and in some cases on integrated systems. The fault-
tolerant multiprocessor appears to be a near-term candidate upon which
to base a dependable integrated system. Airline practice, computer
sizing, software, technology, and reliability issues have been investi-
gated in this context and found to be compatible with the architecture.

A systematic approach to aircraft performance and survival is to
use a distributed system with redundant sensors and effecters, dedicated
local processing, highly dependable data communications, and a highly
dependable central computer. The multiprocessor architecture is
strongly compatible with such a system, although more than one multi-
processor may be required in order to achieve a high level of damage
tolerance.

Reliability model predictions indicate that computer maintenance
can usually be postponed for at least tens of hours following a module
failure by the inclusion of one or more extra spare modules of each type.
As long as certain minimum criteria are met before each takeoff, it
should be possible to achieve a computer failure probability of the
order of 10 -9 in a ten-hour flight. This wi'll depend critically on
module MTBF'S, which would have to be greater than is typical of current
avionics practice. Methodologies do exist, however, for achieving the
necessary MTBF's. Another key factor in achieving the low computer
failure rate is the rate at which the computer can be reconfigured and
subjected to self test. This architecture lends itself well, by virtue
of its low degree of processor dedication.

Project Structure

The following tasks were treated in the work period.

TASK 1: Multiprocessor Architecture Evaluation
A. Establish New Baseline (Chapters 1,2,4,6,9)
B. Reliable Software (Chapter 6)
C. Reliability Modeling (Chapter 5)
D. Minimum Configuration (Chapter 10)
E. Demonstration (Chapter 10)

TASK 2: Appraisal of Aircraft Operating Environment
A. Cost and Effectiveness (Chapter 3)
B. Computational Requirements (Chapter 3, 9)

2

C. System Integration (Chapter 3)

TASK 3: Technology Assessment (Chapters 7, 8).

Organization of This Volume

The first two chapters serve as a tutorial review of the system
and multiprocessor architecture, as updated during the work period.

Chapter 3 presents a summary of the activity devoted to studying
the aircraft application, primarily by the MIT Flight Transportation
Laboratory.

Chapters 4 through 9 treat specific issues relevant to the
architecture, including reliability, software, technologies, and sizing.

Chapter 10 describes a physical emulation of a multiprocessor
of this type, and its use in an autopilot demonstration under fault
injection conditions.

3

I II I III

CHAPTER 1

SYSTEM CONTEXT

This chapter is concerned with the architectural considerations
for a highly reliable and available multiprocessor computer for on-
board integrated system management. A highly reliable computer is
necessary, but not sufficient, for the implementation of life-critical
control functions such as active controls, total fly-by-wire, and total
system management. Therefore, before taking up the multiprocessor's
architectural details, we will consider its significance in the context
of the whole aircraft.

1.1 Sensors and Effecters

For purposes of information processing analysis, it is appro-
priate to regard the aircraft as a system of sensors and effecters,
where information processing elements derive inputs from sensors and
generate control signals to effecters. Effecters, which are displays
and actuators, operate upon the man-machine environment via dynamics
and human responses, producing effects that are measured by sensors.
Figure 1.1 illustrates this model.

A significant point of departure from this model occurs at the
next lower level of abstraction in contemporary systems, in that
redundancy occurs in the form of independent and often dissimilar sub-
systems, as shown in Fig. 1.2. Subsystem failure is a routine occur-
rence, and in most cases has less than a catastrophic impact on flight
safety. To implement,systems in this manner, the flight crew is employ-
ed as a system.integrator, with ultimate responsibility for failure
detection, identification and recovery for the vehicle. The use of
human judgements and responses in this manner constrains the design and
utilization of the aircraft and its operational parameters, as for
example the static stability, structural strength, traffic headways,
etc.

4

I

EFFECTORS SENSORS
1

AIRCRAFT,
FLIGHT +-!A 0
CREW, L u

AND EXTERNAL
SIGNALS

Fig. 1.1 Information Model of Aircraft.

1 VOR/DME (I--

- AUTOPILOT 1A
---------_----

1 FtATFi SENGl

II 1B -

- AUTOPILOT 2A -

Fig. 1.2 Examples of Contemporary
Redundant Independent Subsystems.

The implementation of substantially more sophisticated and
autonomous controls calls for capabilities that are apt to require the
creation of an integrated system. The incorporation of'adequate redun-
dancy and contingency into integrated systems poses significant problems,
however. This is the issue which we now address, in the context of the
system model of Fig. 1.1.

Since one can never rule out the occurrence of unlikely events,
one must resort to probabilistic criteria for system design. Given that
sensor and effector subsystem failures will occur in routine fashion,
we seek a number of characteristics in subsystem and system design that
enhance the probability of system survival. Without going into detail,
one can identify broad chracteriaations such as Mean Time Between
Failure (MTBF), failure independence (i.e. absence of correlation among
failures in distinct subsystems), and robustness in the sense of re-
covering from all failures for which it might potentially be possible
to recover. The last of these items is not directly quantifiable. It
requires the anticipation of all permutations of failures that will
occur in the lifetime of a fleet of systems, and the creation of
"contingency modes" of operation.

The desir'able characteristics mentioned in the preceding
paragraph for systems and subsystems suggest the following design
philosophy for critical integrated systems. First, sensors and
effecters should be diversified to the point where failure correlations
are adequately small. Diversification should not be excessive, however,
as it is counterproductive to the second objective, modularity.
Modularity means the use of identical modules for multiple functions as
well as redundancy, and serves MTBF, logistics, and contingencies.
Modularity is beneficial in the contingency sense, as it tends to
minimize the variety of contingencymodes as well as to make it easier
to create algorithms to cover families of contingencies.

With adequate diversification and substantial modularity, an
integrated system can combine high survival with systematic utilization
of resources. To the extent that contingency modes are algorithmic,
the potential exists for supplanting or replacing the judgement factor
of current systems with mechanized information processing. Thus we
arrive at the third objective of the design philosophy, which is to have
an information handling medium that is reliable and available to a
degree of probability well in excess of that required for the survival
of the aircraft itself.

The structure of a suitably dependable information processing
system is the sub.ject for the remainder of this chapter. Prior to clos-
ing this section, however, it should be pointed out that the information
system embraces both non-critical subsystems and critical self survival.
A significant aspect of the system architecture, therefore, involves
the assignment of redundancy and survivability to the distributed
portions of the system.

1.2 Local Processing

The highly survivable information system whose motivation was .
established in the preceding section could in principle be located in a
single enclosure, with dedicated connections to each sensor and
effector. As a practical matter, a certain degree of distribution of
the information system is inevitable. Most of the sensors in use today
as well as those envisioned for the future rely on electronics for
manipulation, interpretation, and perhaps testing. In times past, the
notion of system integration carried the implication of using a single
large computer on a shared basis for as much of the information proces-
sing as possible. This attitude reflected the high risk and cost of
digital computers. In the contemporary view, by contrast, the digital
computer is less costly and less risky, particularly when it is used
for functions of limited size and sophistication. Consequently, rather
than try.ing to push information processing towards a central facility,
the tendency today is to take advantage of the specialized electronics
for each subsystem, but also the use of an appropriate amount of
digital computer processing local to, and/or dedicated to, the subsystem.
The fact that subsystems are individually non-critical makes it possible
to eliminate fault tolerance as a local processing requirement, provided
that the MTBF of the processing equipment is at least commensurate with
that of the remainder of the subsystem.

The localization and "deLcriticalization" of some of the infor-
mation processing functions of the system carries a substantial list
of benefits, as follows:

1. Bandwidth and Reaction Speed

A central computing facility is a good way to share resources
such as memory capacity and sophisticated processing, but it is a poor
way to accommodate a mixture of these things along with a requirement
for high data bandwidths and fast reaction speeds. Fortunately for the
system architect, the majority of high bandwidth and fast reaction

8

-

operations are, or can be, dedicated to a sensor, an effector, or a
sensor-effector subsystem. The use of local processing relieves a fault-
tolerant central computer of a speed requirement that it is ill-equipped
to handle, especially given its principal burdens of self survival.

2. Task Switching Overheads

A related benefit of local processing stems from the penalty
incurred in time-sharing a central computer among numerous small tasks.
The overhead consists of software, execution time, and propensity for
data interference.

3. Simplex vs. Redundant

Where local processing can be simplex (non-redundant), a direct
cost saving accrues purely on the basis that the mass of redundant hard-
ware is thereby made smaller.

4. Software Partitioning

By partitioning the software for dedicated subsystem functions
into dedicated computers, one realizes several advantages. First, it
becomes easier to manage the software generation, in that different
programming organizations can generate software for different sub-
systems using different languages and different computers, should these
be appropriate. Second, the operating system software of a small
computer dedicated to a modest functional scope can become simplified
almost to the point of non-existence. Finally, the system is made
change-tolerant, by virtue of the isolation afforded by separate
computers. That is, the only software needing re-validation after a
change is that software co-resident with the changed software in the
same computer.

5. Uniform Interfaces

In furtherance of the aim to employ modularity, the liberal
adoption of local information processing tends to support the creation
of uniform interfaces among subsystems. Such interfaces would be
digital, with the possibility of employing codes or echo checks, and
would be suitable for dedicated links, buses, and data networks alike.

9

To sum up the issues of local processing, it has been found that
local information processing, including digital processing, can be
beneficial for a highly survivable integrated control system. Such
distribution of digital computers is clearly feasible at present;
indeed, there appears to be an accelerated growth in the number of
instances of digital processing in avionics sensors and effecters.

1.3 Data Communications and Information System Structure

At this point in the discussion it has been established that the
information processing system possesses non-redundant, non-critical
elements local to subsystems, but that the information system as a
whole is highly survivable. We have implied that the non-critical fail-
ures will be few enough in number on any given flight so that valid
contingencies exist and can be found. Exceptions are to be highly
improbable. Survival of the aircraft will require the survival of
minimum levels of sensors and effecters, motive power, structural
integrity, and the information system. Survival of the information
system will require not only the survival of minimum levels of local
processing for sensors and effecters, but will further require the
survival of system integrity, which is an unambiguous successful
collaboration of surviving modules.

Whereas system integrity can in principle be embodied in a wholly
distributed system to some degree, the subject system architecture
employs a fault-tolerant central computer for the maintenance of system
integrity. This computer also serves those digital computation functions
that are non-dedicated, i.e. which involve the coordination of separate
subsystems. Between the central computer and the local processors is a
data communication facility, which is composed of non-critical elements,
but whose partial survival is critical. The information system structure
is shown in Fig. 1.3.

We distinguish three different fundamental fault-tolerant data
communications structures, They are the dedicated, or star connection
of Fig. 1.4a, the redundant bus connection of Fig. 1.4b, and the net-
work connection of Fig. 1.4~. Each approach has pro and con character-
istics, which will not be treated here in detail, but rather briefly
discussed.

Dedicated connections are simplex in most cases. The failure of
one such connection affects at most one non-critical subsystem. The

10

peers
DATA COMMUNICATION FACILITY

LOCAL PROCESSORS

SENSORS/EFFECTORS

Fig. 1.3 Simplified Representation of Integrated
Information System.

11

I COMFWTER 0

‘--l-l-
I -

a. Dedicated

C. Network

b. Redundant Bus

u = Central Computer

0
= Local Processor

Fig. 1.4 Data Communications Structures.

requirements imposed on the central computer's interface will be taken
up in the next chapter. The growth potential of dedicated links is
halted once the central computer's enclosure has been built. They
moreover tend to under-utilize the interface electronics and connection
medium. Their advantage over the other two approaches is their inherent
graceful degradation.

A redundant bus abandons graceful degradation, but it better
utilizes equipment and it has good growth potential. An individual
element can fail so as to make one simplex bus useless. An N-redundant
bus can in principle support (~-1) failures, if they are uncorrelated.
The use of dispersed bus couplers rather than direct subsystem-bus
interfaces tends to minimize bus failure correlations. The nominal
topology of a bus is such that point-to-point links are not useful.
Variants such as rings, however, can use point-to-point links. This
issue is raised because of the degree to which fiber optics are con-
sidered promising for lightning strike immunity. So far, only point-to-
point fiber optics links have appeared to have a solid foundation.

The network is in some senses a compromise between dedicated
and bus connections. The network topology is such that the loss of
numerous links is tolerable. The network's linkage mass is comparable
to that of the redundant bus, because the network does not need full
replication as does the bus. In this respect the network is like the
dedicated approach, Error detection is necessary for achieving this,
however, which will impose some overhead on the method. Other overheads
exist in the form of switching hardware at each node and management
software in the central computer. Equipment utilization is more or less
comparable to that of the bus, and bus protocols are used for network
data handling 111.

It may be presumed that all three of these methods will employ
serial data transmission, and that the interface to each subsystem
will be comparable, albeit not identical, for the different methods.
The interface at the central computer's end is virtually identical for
the three systems, differing only in the number of input-output access
modules needed. There is no reason why all three of these methods can-
not be used in different parts of the same system.

13

1.4 Central Computing and System Management

This final section of the chapter on System Context will serve
to introduce the material of the subsequent chapters describing archi-
tecture, reliability, and performance of the central multiprocessor.

The point has already been made that the survival of the air-
craft depends not only on the survival of a suitable minimum subset of
the sensors and effecters, but also on the ability of the system to
"mobilize" them into coordinated action. Such mobilization has a
redundancy management aspect wherein data access is maintained. It
also has a contingency aspect, wherein the vehicle dynamics are con-
trolled via surviving effecters on the basis of information derived
from surviving sensors. The adoption of a fault-tolerant central
computer into the system structure makes it possible to assign both the
redundancy management and the contingencies in an unambiguous way to a
hardware-software entity whose failure and nonavailability are highly
improbable.

One can characterize the central computer, then, as having a
primary function of simply surviving, along with the functions of
system redundancy management and contingency management. In addition
to these functions, the central computer has other natural system roles
owing to its hierarchical position in the information system structure.
These roles include the coordination of sensor-effector activities, of
which a digital autopilot is an excellent example. In some cases this
function alone can account for a substantial fraction of the central
computing resources. Another role is that of command, where there may
or may not be interaction with the flight crew. This can be viewed
somewhat abstractly as the maintenance of system order and purpose by
the delegation of tasks to hierarchically subordinate function centers
both within and without the central computer.

The architecture of the central computer is strongly driven by
the urgency of preserving a valid data stream. Failure to do so could
have catastrophic consequences, such as loss of the aircraft state
vector, loss of configuration data, or loss of command. For this
reason, every piece of data that is transferred, processed, or stored,
is manipulated in triplicate. That is, every processor, memory, and
internal bus is operated together with two others in a group denoted a
"triad." When a triad delivers a piece of data, three copies of the
data are delivered, one from each triad member. The recipient of the

14

data is also a triad, each member of which has access to all three
copies of the data. Each member of the recipient triad makes an inde-
pendent determination, by voting, of the correct version of the data it
receives. If all copies agree, the correct version is obtained from
any of the copies. If one copy disagrees, the correct version is taken
to be the majority function of the copies. This methodology is the
well-known and familiar triple-modular redundancy (TMR) approach.

The central computer is a variant of the classical TMR structure
in two ways. First, it is able to replace failed triad members with
spare modules. This particular variation of TMR is another well-known
and familiar approach, called hybrid redundancy. The second variation
is the use of, parallelism in the processors and to a certain extent in
the memories. Parallelism is a significant dimension because it permits
spares to be pooled, and it permits testing to be conducted on some
modules while the rest of them are engaged in critical on-line functions.

The parallel-hybrid TMR structure is potentially capable of
having a high degree of fault tolerance and high system reliability.
It is a costly approach in comparison to a simplex computer, not only
because of its hardware triplication, but also because of overheads
produced by its parallelism. Nevertheless, this approach is strongly
to be recommended, because of several factors:

1. Alternate structures, less expensive in principle, have other
cost sources that are not immediately obvious.

2. Procurement, maintenance, logistics, and reliability are all
favorably impacted by the use of many small processors as
opposed to one large one,

3. The economy of sparing is very high in this approach.

4. This is the only approach known by the authors to be capable
of the degree of latent fault exposure that is required to
achieve the desired degree of survivability.

There is no unique parallel-hybrid computer design. It can be a
multiprocessor, a multicomputer, or a combination of the two. Additional-

lY, numerous architectural alternatives exist. The next chapter
describes a design approach based on a multiprocessor structure.

As a final note on the system role of the central computer, this
element, like any other system element, can be made redundant for
purposes of surviving physical damage. For a life-critical application,

15

it is likely that this would be done, with perhaps two central
computers in two different locations in the aircraft.

16

CHAPTER 2

THE ARCHITECTURE OF A PARALLEL-HYBRID
REDUNDANT MULTIPROCESSOR

The multiprocessor architecture described in this chapter is one
that needs to meet severe dependability requirements while at the same
time providing substantial throughput with moderate hardware cost. The
approach taken was to use conventional processors and conventional
memories interconnected in such a way that no single-point failures
exist, that failed modules can be retired and replaced automatically,
and that as little as possible need be assumed about the nature of
random failures.

The architecture has several dimensions. The first area to be
discussed is the architecture as viewedbythe programmer, where for the
most part the redundancy of the computer is invisible. A subsequent

' section treats the redundancy aspect of the computer, followed by
sections dealing with synchronization, configuration, and fault manage-
ment.

2.1 Nominal Organization

A multiprocessor, loosely defined, is a computer with several
processors and a single (possibly multiport) memory accessible to all
processors. In the extreme, all instructions and data reside in memory
available to any processor, so that processors are "anonymous." Given
a suitable state vector, any processor can execute any procedure from
any starting point. Motiviations for multiprocessors are typically to
increase productivity and availability at the same time, although
these two purposes are largely competitive. At any rate, parallelism
is intrinsic to the multiprocessor, as each processor is able to
execute a different concurrent procedure subject to limitations imposed
by resource sharing and sequential constraints on the procedures.

17

2.1.1 Memory Access

A "canonical form" of a multiprocessor is illustrated in Fig. 2.1
which introduces the notion of memory private to each processor in
addition to the common memory. The rationale for this private, or
cache, memory stems from the limitations imposed on parallel operation
by memory access constraints. In a multiprocessor with highly parallel
memory access, memory conflicts would occur only when individual units
of data are simultaneously requested, or are locked for sequential
conflict resolution. This would be the optimum structure for parallel-
ism, and the cache memory's role is reduced to a possible enhancement
of processor execution speed.

In the parallel-hybrid redundant multiprocessor, on the other
hand, the memory access is highly serial, for reasons dictated by relia-
bility and economy. This essentially means that the memory has a
single port, and that the throughput of the multiprocessor is governed
by the bandwidth of this memory port. In this case, the cache memory
has a significant role in enhancing parallelism. The combination of
processor and cache is a true computer, capable of performing elaborate
operations on input data in response to terse commands. This means
that the common memory can contain programs written in a language level
higher than the processor's machine-language level, and that the
processor-cache unit can interpret the higher level statements during
the time that other processor-cache units are accessing the common
memory. In this mode of system operation, which is really a form of
"virtual machine," a memory port of moderate bandwidth can support an
instruction execution "bandwidth" that is, at least in principle, almost
arbitrarily large.

The degree to which the instruction execution bandwidth can
exceed the common memory port bandwidth depends on the parameters of
the cache memory, the terseness of the higher level language, and the
relative amount of input and output data for each independent procedure.
Clearly, the enlargement of the cache memories tends toward a multi-
computer organization. Indeed, at some point the total cache capacity
becomes adequate to contain everything in common memory, and the useful-
ness of common memory is reduced to the buffering of inter-process data.

It should be noted that the use of cache memory to eliminate
common memory has a significant side-effect. Earlier in this section it
was pointed out that in the extreme, the processors in a multiprocessor

18

COMMON MEMORY
MODULES I I I

I MEMORY ACCESS I

I INTERFACE ACCESS I

INPUT-OUTPUT

Fig. 2.1 Multiprocessor Functional Form.

are anonymous. This characteristic iS significant to our application
because of the frequent reconfigurations that need to take place in
this computer for latent fault exposure, which is described further on.
Anonymity also provides an intrinsic mechanism for dynamic load distri-
bution among available processing resources. The cache memory acts to
reduce the anonymity of the processor. To put it another way, the
degree of anonymity is determined by the ease of reloading the cache
memory. With zero cache memory, anonymity is greatest. As cache
memory is increased to support instruction bandwidth enhancement, the
anonymity of the processor-cache units depends on the amount of cache
memory whose contents are unique to one processor. Note that the in-
corporation of identical procedural and other constant data, or indeed
indentical variable data, in every cache memory has no adverse impact
on anonymity.

The use of a cache memory in a sampled-data control application,
such as the aircraft application considered here, is generally productive.
The typical job step uses rather few data samples as input, and produces
one data sample as output. The procedures used tend to lend themselves
well to expression as macro-operations, i.e. higher level operations,
such as floating point arithmetic, linear combination, elementary
functions, vector and matrix operations, and so forth. The incorporation
of procedures of this level as cache subroutines is reasonable and
profitable in today's technology. The current high annual rate of
memory density increase prompts one to observe that a fairly extensive
set of procedures, and indeed a hierarchy of procedures, are appropriate
for inclusion in cache memories to be produced several years hence.

The memory structure of the parallel-hybrid redundant multi-
processor includes cache memories for data and procedures, partly read-
write, but mostly read-only, designed to enhance instruction bandwidth
with rather little loss of processor anonymity. The common memory,
although highly modular, acts as a single-port paged memory, accessible
to one processor at a time via a serial bus with a built-in contention
mechanism.

2.1.2 Interface Access

The external interfaces of the multiprocessor could in principle
be accessed by the memory bus and be addressed in the memory space.
The nature of input-output traffic, however, is enough different from
that of memory traffic to justify a separate channel for input-output

20

data. This interface channel is strongly analogous to the single port
memory, in that different processors access this channel at different
times . It is a serial bus, also, but contention is resolved by software
rather than hardware. The bandwidth is lower than that of the memory bus.

If one were to look for an analogy to the processor's cache
memory in relation to the input-output data bandwidth, it would be the
local processors dedicated to sensor and effector components. This
point was anticipated in the preceding chapter by noting that bandwidth
and reaction speed requirements are alleviated by local processing.

2.1.3 Functional Resource Allocation

The programmer sees this multiprocessor as a machine for execut-
ing job steps, largely corresponding to periodic sampled-data updates.
The magnitudes of these job steps will vary considerably from one
control function to another, but will require something of the order of
a few milliseconds, on the average, of processor time per job step.
The procedure for each job step is written in a suitable language, and
resides in common memory. Typically, each job step is scheduled to
occur at a given time or following a given event. The relevant dispatch
data for each scheduled job step is kept in a queue, where it is
frequently examined to see if the job step is eligible to be run, or
invoked. The frequent examinations are conducted by processors that have
completed their earlier assignments, and are available to undertake new
ones. When an available processor determines the subset of eligible
job steps, it selects one of them to invoke, where the selection can be
made by a simple or complex algorithm. In this way, job allocation is
dynamic, and adjusts itself to the momentary load distribution and to
module failures. If processors are insufficiently anonymous, this can
produce an overhead reduction in system throughput.

Memory management is not a critical issue in this application.
No special consideration need be given to this area beyond the fact that
the common memory, like the cache memory, will combine read-only and
read-write memories. Test and reconfiguration problems are treated
later on.

Input-output management in a multiprocessor can be more complex
than it is in a single multiprogrammed computer, because as a single-
port resource, it impinges on program parallelism. Depending on the
statistics of external data traffic and of internal job steps, different

21

access strategies may be appropriate. The most straight-forward of
these is to treat interface access as a single resource that iS alloca-
ted to a single process for its exclusive use for the short period of
time that a process requires access. Access may be granted on a priority
basis or a first come first served basis. That is, when a processor
needs interface access, it ascertains by means of flags in memory whether
the interface is free. If not, the processor waits (with appropriate
safeguards against lockup) until it becomes ,free. A more complex strat-
egy is to quasi-dedicate a process to handle and buffer all input-output
traffic. This is apt to improve the net input-output bandwidth at the
cost of internal memory bandwidth. It moreover largely reduces the ano-
ymity of that processor, with a consequent penalty in load sharing and
recovery speed. The current presumptionis that the former approach,
using processor contention, will be preferable for this application.

2.2 Redundant Organization

The physical organization of the parallel-hybrid redundant multi-
processor is substantially more complex than the nominal organization
outlined in the preceding section. A simplified module diagram of the
computer is shown in Fig. 2.2. Superficially, this diagram appears the
same as the nominal multiprocessor. The principal differences are that
the buses for memory and interface access are redundant, and that the
actual number of modules is three times the number of nominal modules
plus some number of spares.

As mentioned in the preceding chapter, all activity is conducted
by triads of modules and triads of buses. A module triad is formed by
associating any three like modules with one another. This means that
any module can serve as a spare for any triad. Such flexibility permits
the best possible utilization of surviving modules. A single triad of
bus lines is active at any one time for each of the memory and interface
accesses. In other words, a three member subset of N bus lines is
chosen on a quasi-static basis to serve as a bus triad.

Every module of every kind is able to receive data from all
incident bus lines, and contains a decision element to formulate a
corrected version of bus data. It is necessary for each module to know
which three bus lines are the active ones. These three lines are
connected to a voter in each module, thus constituting a TMR element.
The three active bus lines carry three independently-generated versions
of the data, each version coming from a different member of the triad
that is transmitting the data. To accomplish this, it is necessary to
assign each module to transmit on one specific bus line. Now if

22

N
w

I II -u- I I
MEMORY ACCESS BUSES -- 5 4

1T
PR(ESSOR PRf ESSOR

-= AND CACHE J AND CACHE l l .

IH MEMORY _

*\/

1 INTERFACE ACCESS BUSES -- 5

NOTE: BG = Bus Guardian
BIGS = Bus Isolation Gates 1J ' I

b-
TO/FROM SYSTEM TO/FROM SYSTEM

FIG, 2m2 SIMPLIFIED PHYSICAL DIAGRAM OF MULTIPROCESSOR

totally flexible module configuration is to be possible, it follows that
the assignment of a module's transmission to a single bus line,must be
quasi-static and reconfigurable.

2.2.1 Bus Guardians

In addition to the redundancy described in the preceding few
paragraphs, the redundant organization differs from the nominal one by
virtue of the inclusion of.independent submodules called bus guardian
units in each processor,'memory, and input-output access unit.
Guardians are charged with governing the status of theirassociated
modules. This includes power-on status, memory bus triad and transmis-
sion selection, and certain self-test configuration selections.

Each of the functions of the guardian has the characteristic
that its failure modes have safe directions as well as unsafe ones. By
biasing the failure modes toward the safe directions, it is possible to
increase the probability of system survival. In general, the safe
failure modes of a modulearepower-off, and bus transmission disconnected.
To bias in this direction, one can employ redundant guardians in each
module, and require agreement among them to establish power-on and bus
transmission enable.

The connection of bus guardians is illustrated in Fig. 2.3. It
should first be noted that the guardian principle depends heavily on
fault independence. Therefore each guardian derives its power, its bus
inputs, and its timing reference independently of all other guardians.
It is moreover physically isolated from all other guardians and all
modules. A particularly critical area from the isolation viewpoint is
the control of the module's transmission interface onto the various bus
lines. The bus isolation gates must be highly independent of one
another, as must the guardian's enable signals to these gates. This is
one of the crucial electrical and mechanical design aspects of the
entire computer.

Bus guardians are addressable as part of the common memory
address space, and are capable of receiving messages from any processor
triad via the active memory bus triad. A message to a guardian contains
commands which are staticized by the guardian and applied to its outputs
until superseded by a new command message. In this way, the probability
is remote that a failed module can assert more than one erroneous data
stream. As a result, correct data can be determined by the bus voters,
and the malfunctioning module can be switched to a silent state. It is

24

L

r

PROCESSOR OR MEMORY
MODULE

POWER SWITCH ---I- POWER SWITCH

BUS ISOLATIOK GATES

REDUNDANT BUS

Fig. 2.3 Bus Guardian Connections.

noted in passing that certain failures of a bus isolation gate can render
a bus line useless, in which case that active bus triad must be
reconfigured to use a spare line. However, most guardian failures
appear as passive failures of the processor, memory, or input-output
access unit to which the particular guardian unit pertains.

Guardians are used as agents to convey the computer's configu-
ration authority to all elements of the computer. They are highly
secure against the random or willful malfunction of any single active
transmitting module. They make possible the highly flexible reconfigu-
ration referred to earlier.

2.2.2 Processor and Memory Modules -

It was mentioned before that all modules and buses are organized
into triads. In the case of processors and memories, there can be
numerous triads in existence at the same time, but only one memory bus
triad and only one interface bus triad. Each processor triad acts as
one functional processor, of which several can work in parallel. Each
memory triad acts as a page of memory, of which several can exist at
one time, but only one can communicate at a time with a processor triad.

When a processor fails, its triad will attempt to complete its
current job step, which it will be able to do unless a second failure
prevents it. The period of vulnerability to a second failure will be
a fraction of a second. When the job step is complete, one of the
processor triads is assigned the task of reconfiguring the injured
triad. When the erroneous module is identified, it is removed by
commands to its guardians. If a spare is available, it is connected to
the appropriate bus by its guardians, likewise upon command by the
processor triad assigned to the reconfiguration. Triad identity will
be assigned to the spare processor by a direct message. If no spares
are available, the injured triad is retired. The resources of the
multiprocessor are diminished by one processing unit, and the two
unfailed members of the former triad are now available to be used as
spares, should further failures occur.

The situation is much the same for memory modules. The principal
difference is that memories are not anonymous. In fact, a read-only
memory module is totally dedicated to its assigned function, and cannot
be used as a spare. When a read-only memory triad is injured by the
loss of a memory module, a read-write memory module can be used as a

26

spare. It must be loaded to agree with the surviving triad members
before a second failure occurs. If no spare is available, the triad is
reduced to a dyad, which is vulnerable to the next failure, at which
time one memory page is lost. This is a significant departure from the
flexibility offered by the anonymous processor triads. The eventuality
of read-only memory failure must clearly be covered by the inclusion
of adequate spares, either read-write memories for flexible pooled use,
or extra dedicated copies of read-only memory.

2.2.3 Input-Output Access

Figure 2.2 indicates the existence of input-output access modules
connected to the internal interface bus and also'to the external environ-
ment. In the last section of the preceding chapter, it was pointed out
that the external interfaces of the computer could alternatively support
dedicated, bussed, or networked link structures to the sensor and
effector components. The redundancy structure at this point depends on
the redundancy desired in the external interface.

The simplest conceptual structure is for a triple-redundant
interface, such as a redundant external bus, where the triple modular
redundancy structure is extended through to the component interfaces..
Each external bus line can be dedicated to a different input-output
access module, which in turn is assigned by its guardian units to
transmit on one of the active interface bus lines. More complex
variants are possible, in which each access module performs error cor-
rection by voting on incoming data from the external bus.

When an external interface is non-redundant, the strategy would
be to assign it to a single access module, where the module would
transmit on all three active interface bus lines. A malfunctioning
access module could pollute the entire interface bus, but with suitable
encoding and protocol there would be no serious consequences to the
state of the system. The offending access module could be discovered
and disconnected by bus guardian commands conducted over the memory bus,
the major penalty being a time loss on the remainder of the input-output
interface of the computer. For dedicated links, the loss of the link
is non-critical by hypothesis. For a network, whose survival is assumed
critical, the computer must interface with the network in several places
via several distinct access modules. Each such interface would be
simplex, but the system would survive the failure of all but one of them.

27

2.3 Synchronization

The employment of independent redundancy requires some form of
synchronization among the independent data sources. Soft, or loose
synchronization involves such operations as buffering, comparing or
voting, signalling consensus, and marking completed intervals. These
can all be done by program, given suitable intermodule data links.
Hard, or tight synchronization involves hardware comparison or voting,
and a common time reference, where loose synchronization can employ
separate time references.

Tight synchronization is employed in the parallel hybrid redundant
multiprocessor. It provides the basis for solving some problems and
presents some problems of its own. A common time reference, or clock,
that supports hardware voting, allows instantaneous validation of
internal data, configuration control, and, in some cases, interface
data. In this way, it helps to make the redundant multiprocessor
resemble the nominal one, which is advantageous to programmers at
all levels.

The problems of common clocking stem primarily from the fact that
it is critical to computer operation in the dynamic sense. The timing
reference must be continuous and must remain within tolerances. A
second consideration is that common clocking results in time-correlated
data transfer, which is subject to correlated malfunction if subjected
to external radiation of electromagnetic energy beyond the levels
tolerated by shielding. The first problem has been largely solved by
the development of a phase-locked redundant clocking system. The second
problem is intrinsic to all synchronization, but is more severe for
tight synchronization. The problem also exists in principle for any
degree of shielding. When the statistics of such interference are
known, the problem can be addressed in the time domain by encoding for
error detection, rerun for recovery, or repetition for time independence.

The fault-tolerant clock shown in Fig. 2.4 consists of a set of
independent phase-locked oscillators arranged so that the failure of
one or more of the oscillators (up to a design limit) does not destroy
the phase lock of the survivors. The clock signal from each oscillator
is distributed to every module and guardian, so that each can make an.
independent determination of clocking edges. These independent
determinations are made by circuits called clock receivers. In normal,
nonfailed operation, the outputs of all the clock receivers are in
phase lock with each other and with all the oscillators. The same phase

28

- - 1 _I _i - - - - - - ----- :__-___
I
I l-l----

A-4
CLOCK I I RECEIVER

ry .'

CLOCK
RECEIVER

1

----------------------~--

!

Fig. 2.4 Fault-Tolerant Clocking System.

lock holds when an oscillator fails. The failure of a clock distribution
line appears as an oscillator failure, and the failure of a clock
receiver appears as a failure of the module or guardian that contains it.

The fault-tolerant clocking network is vulnerable to undetected,
or latent, faults. This issue is further treated in subsequent sections.

2.4 Fault Detection, Identification, and Recovery

The central computer is designed to have a highly improbable loss
of capability. One can roughly quantify this statement by saying that
one of these computers should exhibit a total failure rate of less than
1o-g failures per hour in a flight of up to ten hours. This virtually
rules out the use of ordinary triple modular redundancy, as the MTBF's
achievable in large scale production have been consistently too low for
such reliability without replacement of failed modules. Therefore some
form of hybrid redundancy is needed. In a simplistic view, hybrid
redundancy works by substituting a spare the first time the TMR voters
disagree. This view has the shortcoming of not taking latency of faults
into account. That is, the first fault may not result in any voter
disagreements, whereas when combined with a second fault, it may
frustrate recovery. A prerequisite for achieving highly improbable
failure in a hybrid system is therefore to expose latent faults by
systematic exercising, or "flexing" of all logic elements. The question
remains of how often such flexing must occur. Hopkins and Smith [21

have shown that the flexing period must be of the order of seconds for
a reasonably sized system with module MTBF's in the ten-thousand hour
range. Clearly, then, flexing cannot be relegated to pre-flight
checkout, but must rather be conducted routinely in flight. An
ordinary hybrid TMR system cannot routinely test itself when performing
critical functions, as it is vulnerable during these times. A parallel
hybrid TMR system can dc this, however, and this becomes an integral
part of the computer's architecture. The remainder of this section is
devoted to this issue.

The latency problem poses an interesting design dilemma.
Redundancy is employed to mask the effects of faults upon the system
as a whole. But redundancy requires flexing of all logic, and more-
over requires that all possible faults that are created by flexing be
made visible to the system, and not masked. The resolution of this
dilemma requires reconfiguration of all independent system elements
plus the selective generation of faulty symptoms to verify detection

30

I- ’ .- -___

mechanisms. This is why, for example, quadded or interwoven [3] logic
is not proposed for this application, as it cannot be reconfigured and
testedonline. The same holds for many of the error-correcting coded
memory and arithmetic units that have been designed.

In the parallel-hybrid redundant multiprocessor, an error
correction mechanism exists in every module in the form of a voter.
Each voter must be tested routinely to ensure that its error correcting
capability is undiminished, which will be explained further. Of all
the voters only those in the processor modules have the additional
capacity to detect, as well as to correct errors. This is not to save
equipment. Rather, the processor is the only kind of module in the
computer that can utilize the information. Processor bus voters under
normal conditions will correct single bus errors and will set error
latches to indicate which of the buses was in disagreement. At this
time the processor can record the identity of the nominal user of the
bus for diagnostic purposes. A processor triad can flex its own voters
during a test job step by having each triad member purposely utter
independent bus data that causes all possible kinds of bus errors. To
pass the test, all triad members must receive the same data, form the
same corrected result, and indicate the same disagreement patterns in
their error latches. This is a relatively simple test procedure, which
can be conducted by a processor triad under test while other triads
carry on normal functions. In a sense it qualifies the triad to conduct
further testing, in which the triad's voters are the decision elements.

The remainder of the system testing function is carried out under
the assumption that the processor voters and error latches are
operational. We have referred to voters as being responsive to "errors"
on the buses. In our nomenclature, a "failure" is a physical malfunction
that may cause a "fault," which is a logic variable malfunction. An
"error" is a manifestation of a fault when the fault affects the out-
come of a data transfer. The test process involves the conversion of
every fault into an error, by making calculations whose results are
sensitive to each logic variable. Each bus and module, including
voters, guardians, isolation gates, clock receivers, oscillators, and
data and power interfaces must be exercised in depth.

No attempt is made here to give an exhaustive description of
these test algorithms. Some of them indeed remain to be formulated. A
few brief outlines will serve to explain the important considerations.

31

Processox testing involves fairly conventional self-test
approaches, except that coverage needs to be higher than that which is
typically obtained in computers. A guideline, then, for processor
design is to eliminate obscure and pattern-sensitive sequences as much
as possible. This would indicate, for example, that a microprogrammable
bit-sliced structure is to be preferred over a fully integrated,
"tricky circuit" processor. The cache memory is also tested by a
conventional program approach. Address faults and pattern sensitivities
present the most important problems to be solved.

Memory niodule testing is similar to cache memory testing. The
memory voters are tested by sending single-error messages to a memory
triad over the memory bus and verifying correct responses from the
triad members.

Input-output access modules are also tested by messages from
processors. Where voters are used, they are tested in a manner similar
to memory voters. Simplex access units are tested in conjunction with
input-output links.

Guardians are tested by reconfiguration commands, and their
voters are tested as memory voters are, by erroneous commands.

The clocking system presents a unique testing problem, both
because it is nearly separate from the data handling elements, and
because the testing of clocking circuitry is fundamentally different
from the testing of other logic circuits, which are testable once a
valid clock exists. Latencies in the oscillators can occur in the
phase-locking circuitry. This is probably the most vulnerable area
for in-flight testing. If the a priori probability of failure in phase
lock circuits is sufficiently low, it may be possible to perform these
tests only at preflight time. Clock receiver latencies, however, can
be tested in one module at a time with minimal system vulnerability.

We might summarize the fault detection process as the arrival of
disagreement errors at the voters of a processor triad, stimulated by
normal or test activity. The detection of a fault initiates the
process of fault identification, which is the discovery of the module,
bus, or other isolated element in which the failure resides. During
the testing process for latent faults, there is relatively little
ambiguity in the determination of faulty modules. In normal operation,
however, an error on the bus can come from a number of sources. The
identification of the faulty module generally requires the "rounding up

32

of suspects," that is, the listing of elements that transmit on the
disagreeing bus. If a module fault is permanent, the module can be
found by moving it to another bus. If the bus is faulty, reconfigu-
ration will not move the error to another bus.

Intermittent faults are less easy to identify. When the source
- of an error eludes detection by disappearing, all of the suspect elements

are assigned one demerit, and a reconfiguration is then made to distri-
bute the suspects evenly on different buses. Subsequent error occur-
rences and reconfigurations will cause a preponderance of demerits to
accumulate in the name of the faulty module.

The recovery process is one of assignment and initialization for
modules, and voter and transmitter selection for buses. These are all
accomplished by the bus guardian units upon receipt of commands from
active triads executing system software. Recovery can take place even
if single errors are present on the buses. In principle, therefore,
an injured processor triad can reconfigure itself.

The use of program restart, or rollback, as a recovery mechahism
is secondary, because it is neither veryeffectivenor very easy to
implement. The first level of system defense is the masking of errors
by the TMR method. The additional system failure rate reduction
achievable by rollback can not be measured, a priori, without an under-
standing of the applications software. It should be anticipated, how-
ever, that any event that defeats the TMR masking is apt to destroy the
vehicle's state vector, which may or may not be catastrophic. In any
event, some degree of program restart capability must be included to
support power-up initialization and to deal to some extent with the
eventuality of uncovered errors. This will affect both system software
and application software.

33

CHAPTER 3

ASSESSMENT OF THE IMPACT ON
COMMERCIAL AIRCRAFT

The next generation of commercial aircraft are expected to make
extensive use of digital avionics, with this technology largely replac-
ing most of the existinganalog techniques. The general arguments for
implementing digital avionics lie in two areas: (1) safety and (2)
efficiency. Safety improvements are seen through (a) system integrity
improvements through increased reliability and more effective use of
redundancy; (b) pilot work load reduction; (c) improved communications
capability and; (d) improved system performance. Efficiency improve-
ments are expected due to (a) higher reliability (longer mean time
between required maintenance actions) and (b) reduced life cycle costs,
throu,gh simplified logistics support, a complete self check capability
reducing unnecessary removals, a capacity to defer maintenance, and
associated efficiency improvements of related subsystems due to the use
of an integrated information system.

3.1 Functional Applications

The need for large scale deployment of fault-tolerant computation
can be seen as arriving with the next generation of aircraft. Table 3.1
outlines the growth of flight guidance modes since the 1940's in Douglas
Aircraft commercial transports, and is typical for the industry. The
next Douglas transport is projected as having digital flight control
and digital fly-by-wire control of sensors and actuators. The use of
digital computation is also expected to extend beyond the flight control,
navigation, and guidance function into other aircraft systems and into
other functions.

Table 3.2 defines four aircraft functional areas: (a) Navigation
and Guidance, (b) Stability and Control, (c) Air Traffic Control, (d)
Aircraft Systems Management. These functional areas are ranked by the
criticality of the function during or for each mission phase. This is
done for current aircraft, next generation aircraft (1980's) and future

34

w
u-l

TABLE 3.1
GROWTH OF FLIGHT GUIDANCE MODES IN DOUGLAS COMMERCIAL AIRPLANES

(TYPICAL ORIGINAL MODEL)

MODEL DC-4 DC-6 DC-7 DC-8 DC-9 DC-10 DC-FUTURE
1946 1947 1953 1959 1965 1971

HEADING HOLD X X X X X X X
ALTITUDE HOLD X X X X 'X X
HEADING SELECT X X X X X

AUTOMATIC-
TURN COOR. X X X X X
AUTO PITCH

TRIM X X X X X
TURN LIFT

COMPEN. X X X X X
VOR X
Ills ----.-. --,-.--AL- -;a-. _-_ x
VERTICAL SPEED X X X
BACK COURSE ILS

(FLT. DIRECTOR
J@y X

~ZNDICATED AIR
SPEED HOLD X X

MACH HOLD X X
ALTITUDE PRESEL. X
TURBULENCE X

X

X

X
X
X
X

X
X
X
X

AUTOTHROTTLE X X X
THRUST RATING X X
AUTOMATIC

LANDING X X
GO-AROUND X X
TAKEOFF X X
CO-MMAND CONTROL

WHEEL STEERING X X
INS NAV MODE X X
FLY-BY-WIRE X
RELAXED STATIC

STABILITY X
GUST LOAD

----- -..

ALLEVIATION X

TABLE 3.1(Continued)

MODEL DC-4 DC-6 DC-7 DC-8 DC-9 DC-10 DC-FUTURE
1946 1947 1953 1959 1965 1371

MANEWER LOAD
ALLEVIATION X

FLUTTER
SUPPRESSION X -__- -- .._-___-._-- .._._ _ .-.-._-_ --___-.. . . _. _

TYPE OF HYD +
_ . _ . . _

VAC TUBES + TRANSISTORS + TRANSISTORS + INTEG VAC
.^ __ .- _ _ _ -- .._

DIGITAL
AUTOPILOT PNEU TUBES MAG AMPS MAG AMPS SOME ICS CIRCUITS
ACTUATOR
ELECTRONICS

AUTOPILOT HYD ELEC MOTOR ELEC MOTOR ELEC MOTOR ELEC MOTOR HYD VALVE HYDRAULIC
ACTUATOR FLYING FLYING FLYING HYD AIL HYD RUDDER FULL POWER
MECH CONTROLS TABS TABS TABS MECH RUDDER MECH ELEV

+ ELEV + AIL

SOURCE: Digital Flight Control Systems - Considerations in Implementation and Acceptance,
Douglas Paper 6342, W-B. Yopp.and S.D. McDonnell, 1975.

TABLE 3.2
FUNCTIONAL CRITICALITY ACCORDING

Fission Phase
TO MISSION PHASE

1. TAKEOFF - Duration of phase: 1 minute

Functional Area

(1) Navigation and Guidance

A. Current Aircraft

Criticality

a.
b.
e *.
d.
e.

A??? N_a_vigativ- _IK-Nav),
Inertial Nqvigation. System (JflS)
Autoland (Autothrottle)
Radar Altimeter
Autopilot

Modes: (for example)

Attitude Hold . . . - - _
Heading Hold

Indicated Aj.r..Spegd Hold. .~. _ _ __~__
Mach- Ho_ld- ~~ _ _.
Constant Vertical Speed

Gl.ide. Slope_Hold

0.

C.

1980's Aircraft

a. utal Autopilot with Category IIIb (see to taxi) 0
b. Hybrid Naviqation 1

c. 4-D Flight Path,Control_ 1

d. Heads UP Display..___.. __ ~. -..L_ ~ ~. 0

1990's Aircraft

(2) Stability and Control

A. Current Aircraft
a. Autopilot: Yaw Damper

B. 1980's Aircraft
0 -

a. Cockpit Displays - Electronic Attitude Direction Indicator(EAD1) 3 - - _--
b. Cockpit Displays - Electronic Horizontal Situation Indicator (EHSI) 3
c. Flight Envelope Limiter 3
d. Ride Improvement System 1

37

,TABI.E 3.2 (continued)

C. 1990's Aircraft

a. Full Scale Stability‘Augmentation System (Hard SAS) 4

b. Gust Load Alleviation 4
c. Flutter Mode Control 4
d. Maneuver Load Control 3

(3) Air Traffic Control

A.

B.

C.

Current Aircraft .

a. Weather Radar

b. Ground Proximity Warning System (GPWS)

1980's Aircraft

a. Digital

1990's Aircraft

a. Digital Data Link (including Metering and Spacing Function) 1 . . .
b. Airborne Traffic Situation Display (ATSD) 1

c. Collision Avoidance System'(CAS) 1

(4) Aircraft Systems Management

A. Current Aircraft

a.

b.

C.
d.

e.

f.

9.
h.

i.

j.
k *
1.

Fuel Control (Tankage) rl
Fuel Control (Engines) 3
Engine Inlet Control 1
Center of Gravity Indicator (Pre-flight) 0
Weight Monitor (Pre-flight) 0
Cabin Environment 1
Air Data System (Tenpcrature; Pressure) 3
Master Caution System 3
Fire Warning System 3
Power Generation and Distribution 3
Automatic Braking System 3
Aircraft Integrated Data System (AIDS - Maintenance only) 1

B. 1980's Aircraft

C. 1990's Aircraft

a. Integrated Data Management System 1

38

TABLE 3.2 (continued)

Mission Phase ---

2. CLIMB - Duration of phase: lo-30 minutes

Criticality --

Functional Area

(1) Navigation and Guidance

A. Current Aircraft

a.
b.
C.
d.

e.

Area Navigation (R-Nav)
Inertial Navigation System (INS)
Autoland (Autothrottle)
Radar Altimeter

Autopilots

Modes: (for example)

Attitude Hold
Heading Hold
Indicated Air Speed Hold _.. "----.
Mach- -Hold
Constant Vertical Speed
Glide Slope Hold _..-___ _ ~--~ _

B. 1980's Aircraft
a. Digital Autopilot with Category IIIb (see to taxi) 2

b. Hybrid Navigation 2

c. 4-D Flight Path Control 2 ~_..-__-.._-- - -
d. Heads Up Display 0

C. 1990's Aircraft

(2) Stability and Control

A. Current Aircraft
a. Autopilot: Yaw Damper _ .- -

B. 1980's Aircraft

2

a. Cockpit Displays - E1ectroni.c Attitude Direction Indicator(EAD1) 3
b. Cockpit Displays .I__ - Electronic Horizontal Situation Indicator (EHSI)3 .__-._I-..-_-_
c. Flight Envelope-Limiter .---. . -.. 3
d. Ride Improvement System 1 i_ ~.- -.--.

39

TABLE 3.2 (continued)

C. 1990's Aircraft

a. Full Scale Stability'Augm&itation System (Hard SAS) 4
b. Gust Load Alleviation. 4
c. Flutter Mode Control 4
d. Maneuver Load Control 3

(3) Air Traffic Control

A.

8.

C.

Current Aircraft

a. Weather Radar 1

b. Ground Proximity Warning System (GPWS) 0

1980's Aircraft

a. Digital Weather'Radar Processing 2

1990's Aircraft

a. Digital Data Link (including Metering and Spacing Function) 3 . . . , .
b. Airborne Traffic Situation‘Display‘(ATSD) 3

c. Collision Avoidance System'(CAS) ?

(4) Aircraft Systems Management

A. Current Aircraft

a. Fuel Control (Tankage) 3
b. Fuel Control .(Enginesj 3
C. Engine Inlet Control _ 3
d. Center of Gravity Indicator (Pre-flight) 0 _
e. Weight Monitor (Pre-flight) 0
f. Cabin Environment 3
9. Air DataSystem (Temperature, Pressure) .3
h. Master Caution System 3
i. Fire Warning System 3.

3. Power Generation and Distribution 3
k. Automatic Braking-System 0
1. Aircraft Integrated Data System (AIDS - Maintenance only) 1

B. 1980's Aircraft

C. 1990's Aircraft

a. Integrated Data Management System 3

40

TABLE 3.2 (continued)

Mission 'Phase

3. CRUISE
Duration of phase: 0.5 hours - 8 hours

Criticality

Functional Area

('I) Navigation and Guidance

A.

B.

C.

Current Aircraft
a. Area Navigation (R-Nav)
b. Inertial Navigation Systim(INS)
c. Autoland (Autothrottle) _~~~- -.
d. Radar Altimeter ._
e. Autopilot

Modes: (for example)

-
Attitude Hold ~~~~ __. _
Heading Hold ._.._.
Indicated Ai.r Speed Hold -_
Mach Hold
Constant Vertical.Spe&

Glide Slope..Hold

1980's Aircraft

a. Digital Autopilot with Category IIIb (see to taxi) 2 - _---.
b. Hybrid Navigation- 2 __--~
c. 4-D Flight Path,Control 2

d. Heads Up Display ~ 0

1990's Aircraft

(2) Stability and Control

A.

B.

Current Aircraft
a. Autopilot: Yaw Damper 2
1980's Aircraft
a. Cockpit DisplEys- Electronic Attitude Direction Indicator(EAD1) 3 --
b. Cockpit Displays - Electronic Horizontal 'Situation Indicator (EHSI) 3
c. Flight Envelope Limiter 3
d. Ride Improvement System 1

41

TABLE 3.2 (continued)

C. 1990's Aircraft

a. Full Scale Stability‘Augmentation System (Hard SAS) 4

b. Gust Load Alleviation 4
c. Flutter Mode Control 4
d. Maneuver Load Control -3

Air Traffic Control

Current Aircraft

a. Weather Radar

b. Ground Proximity Warning System (GPWS)

1980's Aircraft

a. Digital Weather'Radar Processing 2

1990's Aircraft

a. Digital Data Link (including Metering and Spacing Function) 3

b. Airborne Traffic Situation 'Display (ATSD) 3

c. Collision Avoidance System (CAS) 3

(4) Aircraft Systems Management

2
0

A. Current Aircraft

a.

b.

C.

d.

e.

f.

9.
h.

1.

j.

k.
1.

Fuel Control (Tankage) 3
Fuel Control (Engines) . . 3
Engine In1 et Control 3
Center of Gravity Indicator (Pre-flight) 0
Weight Monitor (Pre-flight) 0
Cabin Environment 3
Air Data System (Temperature, Pressure) 3
Master Caution System 3
Fire Warning System 3
Power Generation and Distribution 3
Automatic Braking System 0
Aircraft Integrated Data System (AIDS - Maintenance only) 1

B. 1980's Aircraft

C. 1990's Aircraft

a. Integrated Data Management System 3

42

TABLE .2 (continued)

Mission Phase

4. DESCENT
Duration of phase: lo-30 minutes

Criticality

Functional Area

(1) Navigation and Guidance

A. Current Aircraft
a.
b.

C.

d.
e.

Area Navigation .(R-Nav)
Inertial Navigation System'(INS)
Autoland (Autothrottle)
Radar Altimeter __ _

Autopilot.. ~~ ~. -.
Modes: (for example)

2

7

2.
2
2

_ .-. -- --- .
Attitude Hold- ~~_ ~._
Heading Hdid
Indicated Air Speed Hold
Mach Hold
Constant Jiertiral Speed
Gl.i,de Slope Hold ~.

B. 1980's Aircraft
a. Digital Autopilots with Category IIIb (see to taxi)
b. Hybrid Navigation
c. 4-D Flight Path Cuntrol
d. Heads Up Display -..._-. .-

C. 1990's Aircraft

(2) Stability and Control

A. Current Aircraft
a. Autopilot: Yaw Damper 2

B. 1980's Aircraft
a. Cockpit Displays - Electronic Attitude Direction Indicator(EAD1) 3
b. Cockpit Displays - Electronic Horizontal 'Situation Indicator (EHSI) 3
c. Flight Envelope Limiter 3
d. Ride Improvement System 1

43

TABLE 3.2 (continued)

(4)

C. 1990's Aircraft

a. Full Scale Stability,Augm&itatiok System (Hard SAS) ~~ ._ 4
b. Gust Load Alleviation 4 _-.. ..-
c. Flutter Mode Control 4
d. Maneuver Load Control J...

Air Traffic Control

Current Aircraft

a. Weather Radar

b. Ground Proximity Warning System (GPWS)
1980's Aircraft

2
2

a. Digital Weather Radar Processiny

1990's Aircraft

2

a. Digital Data Link (including Metering and Spacing Function) 3 .___.........
3

c. Collision Avoidance System.(CAS) b .
.3

Aircraft Systems Management

A. Current Aircraft

a. Fuel Control (Tankage)

b. Fuel Control (Engines)

C.

d.

e.

f.

9.
h.

i.

j.
k.

1.

3

3
Engine Inlet Control 3
Center 0 .~
Weight Monitor (Pre-flight) 0
Cabin Environment 3
Air Data‘System (Temperature, Pressure) 3
Master Caution System 3
Fire Warning System 3
Power Generation and Distribution 3
Automatic Braking System. _ 2 _

Aircraft Integrated Data System (AIDS - Maintenance only)
-. .-. ~ - .- -

1

8. 1980's Aircraft

C. 1990's Aircraft

a. Integrated Data Management System 3

44

TABLE 3.2. (continued)

Mission Phase

5. APPROACH AND LANDING
Duration of phase: 2 minutes

Functional Area

(1) Navigation and Guidance

A. Current Aircraft

Criticality

a.
b.
C.

d.
e.

Area Navigation &Nav) - ~ .~__.~
Inertial Navigation System (INS)
Autoland (Autothrottle) ~~ _
Radar Altimeter.

Autc!Pilot~_.~_ _.. __-...._
Modes: (for example)

Attitude Hold
Heading,Hpld -
Jndicated.Air_Speed Hold .~ _.
Mach--Hold
Constant Vertical Speed

-. --- Glide Slope Hold -

B. 1980's Aircraft

a. Digital Autopilot with Cateqory IIIb (see to taxi) 4
b. Hybrid Navigation 1
c. 4-D Flight Path Control -Lo-- 4
d - Heads UP_ Oise!_ lay- ~ 4

C. 1990's Aircraft

(2) Stability and Control

A. Current Aircraft
a. Autopilot: Yaw Damper

B. 1980's Aircraft
l-

a. Cockpit Displays - Electronic Attitude Direction Indicator(EAD1) 3 -. -
b. Cockpit Displays - Electronic Horizontal Situation Indicator (EHSI)?
c. Fliqht Envelope Limiter 3
d. Ride Improvement System - 1

45

TABLE 3.2(continued)

(3)

(4)

C. 1990's Aircraft

a. Full Scale Stability Augmentation System (Hard SAS) 4
b. Gust Load Alleviation 4
c. Flutter Mode Control 4
d. Maneuver Load Control ?

Air Traffic Control

Current Aircraft

a. Weather Radar 1

b. Ground Proximity Warning System (GPWS) 3
1980's Aircraft

a. Digital Weather Radar Processing

1990's Aircraft

1

a. Digital Data Link (including Metering and Spacing Function) 3

b. Airborne Traffic Situation Display (ATSD) 2
c. Collision Avoidance System @AS) 3

Aircraft Systems Management

A. Current Aircraft

a. Fuel Control (Tankage) 1
b. Fuel Control (Engines) 3

C. Engine Inlet Control 1
d. Center of Gravity Indicator (Pre-flight) 0
e. Weight Monitor (Pre-flight) 0
f. Cabin Environment 1

9. Air Data System (Temperature, Pressure) 3_

h. Master Caution System 3
i. Fire Warning System 3

5. Power Generation and Distributi6n 3
k. Automatic Braking System. 3
1. Aircraft Integrated Data System (AIDS - Maintenance only) 1

8. 1980's Aircraft

C. 1990's Aircraft

a. Integrated Data Management System 1

46

-

aircraft (1990'S). Once introduced, a function is expected to continue
into later aircraft designs.

The definitions of criticality are as follows:

0. Off (function either unused or unimplemented).

1. Non-essential.

2. Results in reduced operative performance and
increased pilot workload.

3. Will become potential safety hazard if
unattended.

4. Crucial: instantaneous safety hazard.

Table 3.2 is essentially a complementary addendum to the Table 2
of "Design of a Fault-Tolerant Airborne Digital Computer," Vol. II by
Ratner et al. [4]. Whereas Ratner defined the concept of criticality
of classes, Table3.2 attempts to expand by more closely defining the
impact of function failure on the pilot and by adding the dimension of
time or flight phase to the criticality of a function.

Not all functions are active during all phases of a flight and
are not equally critical during all phases of the flight. Since all
functions are not performed simultaneously, the processing requirements
of the computer are computed by summing the various processing require-
ments within the individual mission phases and selecting the mission
phase with the highest requirement. This should be done for the full
system and should also be done when dropping the less critical tasks.
The resulting figures would indicate the total processing power required
for the system to perform all tasks, and to what extent failures can
impact this basic performance before critical tasks are affected.
Memory requirements for the various applications should be considered
differently, as all programs for all phases must be carried at all times
even when the programs are not being executed. When failures occur
which reduce memory capacity, noncritical programs and data can be
deleted. Once a program is deleted, however,it can not be recovered
during a later flight phase.

Of the more likely functions expected on the next generation of
aircraft, the autoland function tends to dominate many of the require-
ments. Autoland tasks are the most critical, as there is virtually
no time to recover from system failures. Additionally the computational
loads involved are at a peak. Autoland program memory requirements are

47

also large. Some relief is available from the shortness of the autoland
phase, which greatly reduces the system exposure to autoland failure.
It is in fact this very brief exposure period which allows certification
of the existing triplex and deal-dual analog autoland functions. Hard
stability augmentation, gust load alleviation and flutter suppression,
if and when implemented , will place considerably increased reliability
constraints on the computer because of the almost continual exposure to
critical function loss. Interestingly enough, most of these prolonged
exposure functions, while considerably boosting reliability requirements,
make little impact on performance requirements. This is because they
occur in non-autoland phases of flight, where calculations are not SO

complex as the autoland calculations. A notable exception is flutter
supression.

The integrated system will be partitioned into a highly reliable
central multiprocessor(s) and local processing elements. Local proces-
sors are located at and service aircraft subsystems. They format the
data required by the integrated system as a whole and communicate it
back to the central multiprocessor. They also take direction or
commands from the central multiprocessor. Required computations are
partitioned between these local elements and the central site. At one
extreme the local processor is used as a simple data formatter with all
computation being done locally. At the other extreme most of the
computation is done locally with the central site merely serving as a
message switching site to allow the exchange of data among the various
subsystems. Either extreme is awkward, and the actual partitioning will
be somewhere between the extremes. Factors which will affect this
partitioning are (a) criticality of the computation: since the central
site is ultra-reliable an ultra-critical task is likely to be done
there; less critical tasks can be done locally. (b) Globalness of the
task: computation which uses data available only globally, that is from
many subsystems, tends to be centrally sited; computation which uses
inputs and controls outputs all of which are locally available are good
candidates for local processing. Engine control is a good example of
this; failure of a single engine controller is not critical and most of
the control can be done locally with only occasional changes in thrust
set points from the central site being required. (c) Bandwidth
reduction: if preprocessing of sensor data locally reduces the amount
of information being shipped to the central site, then the overall I/O
system can be built with a lower bandwidth. (d) Political/Engineering
considerations: certain control functions are likely to be partitioned

48

I. I I II

according to manufacturer. Thus the engine manufacturer will provide an
engine controller, the radar manufacturer a signal processor, and the
displays manufacturer a display processor. This will almost certainlv
continue to be the case until the reliability of a central multiproces-
sor and its I/O system can be demonstrated. Even then, the partitioning
makes a great deal of sense in many cases, as it allows for the
autonomous operation of subsystems. This may possibly be unimportant
in the context of an integrated system, but will certainly be beneficial
for the manufacturing, repair or testing of the subsystems away from
the aircraft. Partitioning at this time remains fairly undefined pend-
ing the exact definition of the aircraft/function implemented.
Certain isolated cases such as engine control or display processing will
almost certainly be local while others such as air data computation
will be central, but partitioning of the remaining functions will await
greater detail of the specifics of a particular situation.

A major concern in advanced commercial aircraft design is fuel
conservation. A study by Lockheed summarized in Figures3.1 and3.2 showed
that active control technology applied to an L-1011 type aircraft could
result in 4.4 per cent savings in fuel. To achieve this, maneuver load
control is utilized allowing a lighter main wing, and stability
augmentation is used, allowing reduction of the size of the tail surfaces.
The aircraft is statically stable in most areas of the flight envelope,
although stability margins are reduced.

For a single function such as maneuver load control, a triplex
or quadruplex ([Fail-op12) computer may turn out to be sufficient. The
suitability of such a simple approach is aided by two factors. First,
exposure to computer failures is very small. Maneuver load control is
only critical during high-g maneuvers. While it is true that a trans-
port must be certified for high-g maneuvers, the risk due to such
maneuvers is computed as the product of the likelihood of having to make
such a move and the likelihood of the computer failing to perform
adequately during the maneuver. Much of the maneuver load control is
designed to increase the fatigue life of a weaker wing. Since a single
failure can have only a small impact on fatigue life, maneuver load
control is not generally critical. Secondly, a single system such as
this is small, and it is almost always more economic to solve a small
problem in the particular than to develop a more global solution.

The building of multiple, simple dedicated boxes for each such
function is not likely to produce a system which is simple and economic.

49

SPANWISE
WING
LOADING

SHEAR

BENDING
MOMENT

Fig. 3.1 Potential Impact on Design.
(Courtesy of Lockheed California Company)

50

FUEL SAVINGS, %
L-101 1 (DUE WEIGHT AND DRAG)

. REDUCE HORIZONTAL TAIL SIZE BY 350 FT2 2-l/2

. REDUCE VERTICAL TAIL SIZE BY 220 FT2 ’ l-112

. ADD 19,000 LB TAKEOFF WEIGHT WITH NO -
STRUCTURAL CHANGE TO WING

1 TOTAL 4%

NOTE:

MAJOR DEVELOPMENT COST TO MODIFY EXISTING AIRCRAFT; REQUIRES INCREASED
STABILIZER TRAVEL, ALL MOVING VERTICAL, AND RELOCATION OF LANDING GEAR

Fig. 3.2 Potential Impact on Design.
(Courtesy of Lockheed California Company)

51

Indeed the opposite is true. A properly designed integrated system
offers the potential for considerable efficiency improvements over a
multitude of dedicated solutions. Reliability constraints tend to be
greater for the integrated system,though. Where previously many
failures could be projected to occur at non-critical moments for the
affected subsystems, an integrated system isbyits nature much more
exposed to failures. A single failure within an integrated system is
likely to affect many subsystems. Where the failure of one might not
be critical, the failure of several together can have a aggregate
affect which is oritical. Additionally, the aircraft is sensitive to
failure in the integrated system whenever it is critically sensitive
to the failure of at least one of its subsystems. Because the reliabil-
ity constraints for such an integrated system are very high and because
such systems will be fairly complex, there is currently a tendency by
industry to back away from fully integrated systems. Highly critical
functions are unloaded from the integrated system and placed in
dedicated small independent subsystems. This is a viable approach as
long as many of the benefits of an integrated system can be achieved
and the reliability requirement of the integrated can be kept moderate
by unloading onto only a small number of independent subsystems. Many
of the advanced design concepts for flight control will not allow
spin off of the critical calculations from the integrated systems. It
should be expected, therefore, that initial use of the fault-tolerant
multiprocessor will be in reduced criticality situations. As the
pressure to use more advanced flight control builds, and when the inte-
grated system has demonstrated the required reliability it will be used
in increasingly critical applications.

3.2 Maintenance Considerations

On-board computing capability has a direct effect on maintenance
costs of commercial aircraft. The ability to perform in-flight monitor-
ing with assured detection and isolation of errors to the line replace-
able unit (LRU) of the multiprocessor should eliminate unnecessary
removals. Additionally, the ability of the multiprocessor to monitor
the performance of, and test attached equipment should greatly reduce
unnecessary removals of those units and cut the diagnostic cost of
.locating faults. Industry estimates are that 50% of all electronic
LRU removals are unnecessary, at an estimated cost to the airlines of
about $100 million per year.

52

I-‘

In addition to aiding the maintenance precedure, the fault-toler-
ant nature of the computer allows spare modules to be included as part
of the system. This enables maintenance to be deferred until a mainten-
ance center is reached. If sufficient spares are carried on board it
will be unnecessary to stock spares at field depots, and maintenance
can be concentrated at a main center. Resulting savings in logistics
of scheduling and numbers of stocked spares should be considerable.

Certain recommendations can be made regarding the fault-tolerant
multiprocessor.

a. Sufficient spare capacity should be carried to assure
that maintenance can be postponed for at least 50 hours
for at least 99 per cent of the maintenance events.

b. Maintenance of the computer should be centralized,
possibly becoming the responsibility of the manufacturer.

Wherever maintenance can be postponed by 50 hours, it is assured that
the aircraft will pass through the main maintenance base of an airline
before a maintenance action is required. This allows a single site for
the airline to be chosen as the airline maintenance and spare stockage
site. Since most maintenance can be done centrally, and because quality
control can be held tighter for a single site than for many, it will be
advantageous to centralize maintenance. A logicalextremeof this might
be for the manufacturer to maintain service centers that maintain these
computers for several airlines.

3.3 Operational Considerations

An integrated highly reliable aircraft information processing
system may impact airline operations in several areas. The overall
system should have increased reliability when compared to todays
systems, offering improved dispatch reliability. Improved maintenance
and deferred maintenance will also eliminate many delays. A dependable
autoland capability will reduce weather delays. Data logging and
equipment history recording, using the excess or spare compuational
capacity of the system, will improve overall aircraft maintenance, and
may eliminate the need for the flight engineer. More reliable avionics
will mean more extensive use of automatic flight modes eliminating the
potential for many pilot errors. Autoland, for example, is expected to
be several orders of magnitude more reliable than manual landing in
clear weather. Automated checklist and automatic contingency programming

53

further reduce the possibility of crew error. Optimal flight profiles
with optimal engine control can be performed using data and control
available in the integrated system. While many of these tasks are not
critical, the acceptability of automated solutions to these tasks is
hinged upon the economy and continuous availability of the computer
system.

3.4 Industry Visits

To insure a realistic assessment of the C.S. Draper Laboratory
concept for a fault-tolerant multiprocessor, staff members of the MIT
Flight Transportation Laboratory and the C.S. Draper Laboratory under-
took a series of visits to selected airlines, airframe manufacturers,
and avionic equipment manufacturers.

Airlines visited were Eastern Air Lines and Pan American World
Airways. Airframe manufacturers visited were Lockheed Aircraft Corpora-
tion (Lockheed-California Co., Burbank, California) and McDonnell
Douglas Corporation (Douglas Aircraft Co., Long Beach, California).
Avionics manufacturers included Bendix Corporation (Flight Systems Div.,
Teterboro, N.J.), Rockwell International Corporation (Collins Radio
Group, Avionics Div., Cedar Rapids, Iowa) and Sperry Rand Corporation
(Sperry Flight Systems, Phoenix, Arizona).

At the airlines the specific groups visited were responsible for
avionics selection and operational maintenance. As might be expected,
Pan American with world-wide routes and maintenance, differed substan-
tially from Eastern, with its tight short haul structure, as to
operation and maintenance philosophy. Pan American indicated a strong
desire to bring as much of their maintenance operations as possible
back to their main base in New York. In general, maintenance that is
deferrable for 50 hours can be done in New York. Maintenance which can
be deferred for 300 hours would be done at regularly scheduled main-
tenance periods. Eastern, in contrast, showed little interest in
deferring avionics maintenance for long periods of time. Much of the
complex avionics, such as inertial units, are not maintained by Pan
American, but by the manufacturer. This is in line with this report's
recommendation as to the best maintenance procedure for the fault-
tolerant multiprocessor. Eastern, instead, does all of its own
maintenance. Eastern's self reliance mi.ght result from a lack of many
of the complex subsystems found on Pan Am jets. Eastern planes do not
have inertial navigation systems, for example. The tendency is probably

54

toward manufacturer's responsibility for maintenance, particularly for
systems requiring expensive test equipment and highly skilled technicians.
Once the investment is made for such a facility it is likely that it
could handle the entire fleet of a particular type of aircraft. A
single airline may not find it economical to service such equipment
alone. A possible alternative is for several airlines to form cooperatives
to service equipment, or for one airline to make the investment and
service smaller airlines for a fee. Ample examples exist in Europe of
cooperatives for pooled aircraft maintenance, and of airlines performing
services for one another for fee in this country.

Beyond maintenance neither Eastern nor Pan Am felt a great need
for additional functions. Both expressed a desire for more reliable
operation with existing functions. This reflects a general feeling that
for a function to be widely accepted and used, it must be very nearly
continuously available. Thus a good argument can be made for fault
tolerance, even for relatively non-critical tasks.

Both of the airframe manufacturers visited indicated that the
next generation or the next derivative aircraft would use digital
avionics. Some advantages are expected from reduced static stability
and maneuver load control, although such steps toward a control-
configured vehicle willbe small and cautious. The flight control system
will be critical only during autoland and during high speed cruise where
the yaw damper may be vital. Fall-back control systems will allow
manual control under most conditions of the aircraft even if the flight
control system fails. Some concern was expressed that if the computer
did become as vital as some of the more advanced concepts suggested,
that at least two computer sites would be required so that physical
damage to one of the sites would not result in the loss of the aircraft.
The manufacturers foresaw no problems with FAA certification of functions
based upon digital technology, although they noted that software
modularity could ease the certification problem.

The visits to avionic equipment manufacturers reinforced the
belief that the next generation cf aircraft would have a higher comple-
ment of digital computation, but they did not foresee a great deal of
integration of functions. Avionic manufacturers expressed some concern I
that non-dispatch-critical functions would be integrated into a central
computer, even though the concept of the fault-tolerant computer allows
for failures of these functions. They also felt that certain functions
would continue to be performed in analog, rather than digital, fashion,

55

particularly the yaw damper. Avionics manufacturers agreed that power
supply failures and transients, as well as connectors, caused the
greatest amount of problems for avionics equipment on current generation
of aircraft. Again, FAA certification of new digital functions was not
foreseen as a problem and could be accomplished through simulation.

3.5 Summary

.The greatest advantage of a fault-tolerant multiprocessor lies in
the area of safety: the slow degradation of computing capability while
maintaining high*reliability for flight critical functions. To insure
the survivability of the system in case of non-catastrophic physical
damage to the aircraft, the central computer must not be confined to a
single physical location.

Some additional problems (which are not unique to fault-tolerant
multiprocessors) that must be considered in the implementation of the
system are power supplies (both transients and failures) and connectors.
The above two areas cause the great majority of failures (or reported
failures) in current avionics equipment. Sensor and actuator relia-
bility will also become more critical in the next generation aircraft.
Finally, the central computer must be resistant to failures induced by
lightning strikes on the aircraft.

In the software area, it is not anticipated that FAA certification
of software for the fault tolerant multiprocessor will be significantly
more difficult than any other software certification for avionics
equipment. Modularity of software, to the degree possible, will
probably ease the process. The computer language does not have to be
decided on the basis of higher order language or machine language:
rather the most appropriate mix from a programming point of view should
be used. Certification will not be more complicated in any case.

In summary, no major objections or constraints to the use of a
fault-tolerant multiprocessor in airline operations exist, while the
concept does offer several significant advantages.

56

CHAPTER 4

MALFUNCTION TOLERANCE

The usually high level of dependability required in the central
computer makes it mandatory to consider all possible sources and effects
of probable malfunctions. The probabilities associated with exposure
to hazards are important here, as they are in any reliability analysis.
The fact that reconfiguration and recoveryare needed to meet reliability
goals .raises other issues of importance, having to do with the proba-
bilities associated with the detection and identification of malfunctions,
reconfiguration and recovery of the system, and the system status
following a malfunction event. All these considerations relate both to
the design and the evaluation of the system.

To give some structure to this subject we first define the mal-

function sources. Certain of these malfunction sources, external to the
system, are able to be dealt with by isolation of the computer in the
form of malfunction prevention. Where prevention measures are inadequate,
malfunction sources must be dealt with by tolerance, commonly called
fault tolerance. Both prevention and tolerance pose architectural
constaints as well as design requirements extending to the total air-
craft system. The purpose of this chapter is to introduce the reader
to the nature of malfunction sources and the ways in which they impact
the system architecture and design.

4.1 Malfunction Sources

A malfunction is a general term for anominal behavior. Numerous
kinds of malfunctions are distinguished, ranging from microscopic dis-
orders in an integrated circuit to total aircraft impairment. Within
the information processing segment of the total system, we are concerned
about avoiding malfunctions that preclude the availability of viable
contingencies. We can think of potential malfunctions as being infinite-
ly rich in number and variety, and tractable solely because they can be
treated as classes and subclasses.

57

The first class of malfunctions to be examined is that resulting
from externally induced phenomena, such as physical penetration,
radiation (atomic, electromagnetic), temperature extremes, or excursion
of prime power. The common thread in these diverse physical environments
is that their effects can not be confined or localized to one or a few
sub-portions of the information system. The entire system is vulnerable
at one time, and for an arbitrarily high exposure it can not be made
otherwise. That is, the shielding, structure, environmental control,
and prime power generation must all be designed to withstand stated
levels of exposure to known hazards. Exposures in excess of these levels
are potentially catastrophic.

Induced malfunctions can not be dealt with in absolute terms by
internal redundancy, because of their high correlation across separate
elements of the system. Nevertheless, not all overexposures will
defeat a redundant system, and the recovery possibilities of the
redundancies should not be ignored. Other than this, the induced
malfunction problem is treated as a somewhat separate, external issue
from the system architecture. One exception to this last statement is
in the input-output linkages from the central computer to local
computers, and thence to the sensor and effector subsystems. The
potential exposures in these linkages to radiation and damage are parti-
cularly high, and warrant careful consideration of linkage technology
and topology.

The second malfunction class is of malfunctions whose sources
are internal to the system. It is customary to subdivide this class
into two subclasses corresponding to random and systematic occurrences.
Actually, however, it is more nearly true that a continuum exists be-
tween the two extremes, which needs to be characterized by simple and
joint probability distributions. For our present purposes of general
description, it is reasonably accurate to use the concept of a
correlation coefficient together with the assumption of random mal-
function events with a constant hazard rate. For independent malfunctions
within a single element protected by other, redundant, elements, the
correlation is taken to be zero. For malfunctions affecting two or
more redundant elements identically, such as design errors, or pattern-
sensitive anomalies, the correlation is taken to be one. In this case,
the redundant group behaves exactly as a simplex element. In the case
of internal systematic problems, such as crosstalk or generic hardware
weakness, the correlation is intermediate between zero and one. As a

58

I-

general rule, the redundant system failure rate is linearly sensitive
to correlation parameters, whereas it is sensitive to some power,
typically the second, of the hazard rates.

The third class of malfunction sources will simply be denoted as
"other sources." The first two classes are broadly enough defined to
be stretched to cover everything, but it is useful to emphasize certain
sources separately. Thus we include in this third category the
deficiencies resulting from lapses in system specification, that is,
where the domain of operation and the domain of design are not matched.
Software in this sense is a specification. It specifies the sequential
rules of hardware utilization. Logic design is also a specification in
this sense, as are design factors related to the human interfaces and
the sensor and effector interfaces.

The architectural implications of this category are that the
system must be tractable and understandable enough to reduce the
probability of occurrence of such malfunctions to a negligible level.

4.2 Malfunction Consequences -

It has been useful to characterize the various possible mal-
functions according to the levels at which they affect the system.
There are physical malfunctions that occur within hardware elements,
such as a short circuit in a transistor. These have been referred to by
various writers as faults and failures, and in this report the word
failure has been intended to refer to this category. A physical mal-
function may or may not result in a logic mal-function, in which a logic
variable is at some time or another complementary to its correct value.
Where authors use the word'faultl' for physical malfunction, they use
'Iailure"for logic malfunction, and vice versa. A logic malfunction can
occur in the absence of a physical malfunction, notably from induced
sources.

A logic malfunction may or may not produce a data malfunction, --~
often called an error. A data malfunction can occur in the absence of
a logic malfunction, notably from specification lapses. A data mal-
function, in turn, may or may not produce a subsystem malfunction, which
in turn may or may not produce system malfunction.

We have portrayed a propagation chain from physical malfunctions
to system malfunction, with some external entry points. Whether propa-
gation takes place from one level to another depends on whether a

59

causal link exists in the first place, and whether the phenomenon is
masked by a redundancy. Thus a logic malfunction produces a data mal-
function only if it impacts the outcome of an operation. Even then,
it may not, as for example when the data results from the voting of
three inputs, only one of which suffers a data malfunction.

A key point, often overlooked in simplistic treatments of
redundancy, is that redundancy always has a limited capacity to mask
malfunctions, and this capacity can degrade to zero without affecting
the apparent behavior of the system. Therefore, a system designed to
have tolerance may in fact have none at the inceptionofa critical mis-
sion. Alternatively it may have some tolerance, but less than the
design level, and less than what is assumed. The preceding chapter
made this point in the discussion of detection, identification and
recovery. The system reliability impact of this issue is treated in
the next section. It is worth reiterating here that masking is a two-
edged sword. On one hand it is a mechanism for holding malfunctions at
a low system level, while on the other hand it may obscure the fact
that the malfunction has occurred and thereby has reduced the system's
tolerance to future malfunctions.

4.3 Tolerance Renewal

The primary advantage of hybrid redundancy over TMR is that
injured triads are reconfigured back to a state where they can once
again mask malfunctions. This is a process of tolerance renewal. In
principle, the system failure rate is restored it its design value by
the reconfiguration process. If reconfiguration were to fail, the
system failure rate would increase, possibly by many orders of magnitude.

In practice, there are several ways in which an injured triad
can fail to be reconfigured. These include exhaustion of spare modules,
malfunction of the reconfiguration mechanism, failure to detect the need
to reconfigure, and perhaps the use of a defective spare module. We can
characterize the process of tolerance renewal as the detection and
location of any physical malfunction, the removal of vulnerability from
the triad containing the malfunction, the replacement, by spares, of
functions thus removed, and the initialization of the reconstituted triad.
All mechanisms involved in this process are subject to malfunction, of
course, and such malfunctions constitute injury to their triads, and
require that tolerance renewal be carried out.

60

The idealized renewal of tolerance, together with a sufficient
complement of spares, has an interesting theoretical consequence if
the hazard rate is constant. Figure 4.1 illustrates this concept. The
system failure probability increases monotonically with time in the
absence of tolerance renewal. At any arbitrary point in time, if the
system is tested and found to be perfect, the reliability becomes equal
to one. If the te& reveals an injury, then the system is reconfigured
to a state of virtual perfection and the reliability is likewise equal
to one. This paradoxical result depends on the absence of.any deterio-
ration of the renewal mechanism, however. The concept's utility is to
suggest to the reader. that the dynamics of redundancy management are
all-important in maintaining the system reliability at a level that is
unreachable by non-redundant elements.

The actual system behavior differs in several respects from this
concept. First, the supply of spares is not inexhaustable. Second the
tolerance renewal mechanism is subject to degradation. Finally, the
ability to test the system is limited by its probabilistic nature.
These three items will be briefly discussed in the paragraphs following.

The supply of spares is a degree of freedom available to the
system designer. In the parallel-hybrid redundant multiprocessor, there
can be arbitrary numbers of processors, memories, interface access
modules, memory bus lines, interface bus lines, oscillators, and power
converters. If the failure rates of these elements are known, and if
the minimum numbers of each needed for system survival are known, the
probability of exhaustion of spares as a function of time can be calcu-
lated using conventional combinatorial analysis.

The tolerance renewal mechanism in the parallel-hybrid redundant
multiprocessor is largely containedin the voters and the bus guardian
units. Both the voters and the guardian units possess bus line inter-
faces, and therefore are both capable of degrading elements (i.e. bus
lines) outside of their own modules (e.g. processor, memory, interface
access). This by itself is not qualitatively different from a single
malfunction. The important concern is that all guardians in a single
module may fail in such a way as to enable that module to transmit on
more than one bus line. As mentioned in the preceding chapter, design
steps are taken to minimize the probability of this eventuality, but
the probability is finite that it will happen. A subsequent failure of
the module in a malevolent state could cauc.e an entire central computer
to malfunction.

61

t t
TIME -

TIMES AT WHICH COMPUTER IS TESTED
AND RECONFIGURED, OR ELSE FOUND
TO BE FAULT-FREE

Figure 4.1. Idealized Tolerance Renewal.

0
TIME-

Figure 4.2. Fault Latency Model.

62

Finally, we deal with the problem of detecting malfunctions. when
they occur. If a malfunction results in a bus data malfunction, it can
be detected by the voters. If not, it is termed "latent." Latent
malfunctions must be considered at least as harmful as visible ones.
It is for this reason that each critical element must be subjected to
periodic test while the system is on line. The preceding chapter
discussed the matter of periodic testing for some classes of elements.
As an approximation to the testing process we assume that the detection
of malfunctions is an exponentially distributed random process with a
constant rate of discovery. Figure 4.2 illustrates the nature of the
distribution. According to this model, of all the possible malfunctions
that will occur, most of them will be detected after a lapse of several
time constants, but some will never be detected. The parameter p
represents the rate of discovery. The system malfunction probability
that results from finite malfunction detection time can be modeled as a
Markov process with constant hazard rates and constant discovery rates.

4.4 Reliability and Maintenance

The multiprocessor's design approach to system reliability
consists of a combination of shielding, environmental control, redundancy,
reconfiguration, test algorithms, voting, and high reliability design
and manufacture of all hardware elements. In addition, the system
software must be virtually perfect. To a certain extent, these facets
of system reliability are synergistic. That is, once the central
computer attains a certain degree of reliability, it becomes competent
to serve as its own manager, and thereby becomes capable of attaining
even greater survivability by judicious utilization of resources.

Prior to each flight, the multiprocessor will test itself and
the rest of the information system to purge it of latent malfunctions
and establish accurately the degree of tolerance remaining. If this is
adequate for dispatch, the flight will proceed, maintaining high
reliability by the tolerance renewal procedure, including frequent
testing of every element. In this way, a log is maintained of the
status of every element of the system. Intermittent, transient, and
permanent malfunctions can be distinguished, and the momentary tolerance
made known to the flight crew. If changes in flight plan or envelope
are called for, these can likewise be made known.

Upon landing, the need for maintenance, if any, of the information
system will be readily discernable,including in most cases the identities

63

of the elements that have malfunctioned. A possible byproduct of system
fault tolerance is the realization of considerable operational cost
saving by postponing maintenance until the aircraft arrives at a base
where this is most economically accomplished. If the probability of
needing a module change earlier than, say, one hundred flight hours can
be held below one per cent, it could be well worth the inclusion of
one or two extra spares to make this possibie.

64

CHAPTER 5

A RELIABILITY AND AVAILABILITY STUDY
OF THE FAULT-TOLERANT MULTIPROCESSOR

The objectives of this study may be summarized as follows:

1. Assess the availability/reliability of the baseline
multiprocessor configuration with variations.

2. Evaluate existing computer programs or develop
alternate programs towards this goal.

3. Evaluate the results,

The following sections deal with each objective in detail.

5.1 Evaluation of Existing Reliability Programs

Two general reliability assessment programs, Care II and Tasra,
were evaluatedto determine their applicability to the present task. An
analysis of these programs resulted in the following.conclusions.

The first program, Care II, does not lend itself well to modeling
parallel hybrid redundancy. It would have to be modified considerably
to cover this type of system architecture. The program does take into
account degradation in the system reliability due to a lack of coverage
but the modeling of coverage is subjective.

The second program, Tasra, is a combinatorial reliability model,
It does not take into account coverage, or undetected failures.

Since it is preferable to compare different system candidates
on a common ground, a good deal of thought was given to ways in which
we might be able to conform these existing programs to our reliablity
prediction task. It is our considered opinion that to do so would
result in either a distortion of these programs to a point where they
are no longer standard in a useful sense, or a highly erroneous
reliability model. As an alternative, we have observed that the Markov
process model, although not standard in the programmatic sense, is a
widely used and well recognized mathematical tool which can model the

65

parallel-hybrid system with high fidelity and relative simplicity.

Based on these considerations, a Markov process model of the
multiprocessor system was developed to predict the system failure
probability due to a lack of perfect coverage. The next section
describes the model in detail.

5.2 FirstMarkov Process Model of the Multiprocessor

A system is said to be governed by a Markov process if the next
state of the system depends only on its present state, and is completely
independent of the past history of the system states. Such a system
can be accurately represented by a Markov model.

In the present case, the computer system starts out in a state
where all units are functioning correctly. Each occurrence of a fault
moves the system to a new uniquestate. Similarly, each fault detection
(followed by reconfiguration of the system) also results in a new state.
Since all of these state transitions can be defined independent of
the past history of the system, it follows that such a system can be
represented by a Markov model.

Figure 5.1 shows the number of states in a general Markov model
of the multiprocessor. The system states are divided into major groups
or regions. Each such region is identified by the total number of
component failures. The following four component types are distinguished:
processor, memory, bus and the bus guardian unit (BGU). Each major
reg'ion is further subdivided into a number of minor regions. A minor
region is identified by

1. the number of undetected failures U, and

2. the number of detected failures D.

An undetected failure implies that either the failure is not
known (a latent failure) or that the failure has been identified but
the recovery process has not been completed yet. In any case, the
major point of this diagram is to show the relationship between the
number of faults and the number of states in the Markov model. To
solve the model numerically it is necessary to truncate the model to a
finite number of states. Also, in order to obtain the solution
efficiently it is necessary to minimize the number of states commensurate
with the required accuracy of the results. The model was truncated to
146 states based on the following reasons. The probability of the

66

FAULTS,U+D # STATES IN MARKDV MODEL

2 46 I n -3 REGION III,, U T u =J
3 146
4 361
5 761
6 a1000 REGION II, U + D = 2

REGION I, U + D = 1

/ # STATES IN EACH MAJOR REGION

U - UNDETECTED FAULTS
D = DETECTED b REPAIRED FAULTS

Flgure 5.1 The Number of States in a General Markov Model.

67

system being in a state outside the truncated model after 100 hours is
only 10 -12 (assuming there are 100 units each with a failure rate of low4
per hour). Since any truncation of the model increases the estimated
system failure probability, it is a conservative approximation.

Details of the 146-state model of the multiprocessor are shown
in Figures 5.2 and 5.3. Figure 5.2 shows a global view of the system
states and transitions between states, while Figure 5.3 is a section of
the state transition diagram.

The states in the Markov model are distinguished by the following
8-tuple vector

’ (‘u’ ‘D’ MU’ s’ BUr BD, GU, GD).
The eight elements of the vector show the number of undetected and
detected failures in the processor (P), memory (M), bus (B) and BGU (G)
units, respectively. Three types of state transitions may take place.
The first type is from one major region to another (see Fig. 5.1).

Type I Transition: u+) = u(to) + 1

D(tl) = D(to) - 1

This transition takes place when a unit fails. Each failure is
initially undetected. The time for detection and recovery depends upon
a number of factors including the type of failed unit, test cycle
frequency etc. This type of transition increases the number of
undetected failures by one. Of course the total number of failures
also increases by one.

Type II Transition: U(tl) = u(to) - 1

D(tl) = D(tO) + 1

This transition takes place from one minor region to another. It occurs
when the system repairs itself, that is, identifies a failure and
recovers from it. Therefore the number of undetected failures decreases
by one, the number of detected failures increases by one, while the
total number of failures remains unchanged.

The last type of transition takes place when a unit failure
results in a catastrophic failure that is, the systemfails.

Tables 5.1 and 5.2 show the transition rates for the model
described above. The following definitions and assumptions were made
to arrive at the transition rates.

68

e A MODULE FAILS

~-b THE SYSTEM RECOVERS

D=3 J

U= # undedected failures
D= # detected failures

Figure 5.2 The Markov Model.

U=D=O I U=l I D=l
D=O u=o

I I

I I

I

(The 8-Tuple State Vector S(Pu, MU, BU, Gu, P,,, M,,, BD, GD)

I

I

I

I

I

I

I

Uniquely Defines Each State of the Model.)

Figure 5.3 A Section of the Transition Diagram.

70

TABLE 5.1

FAILURE TRANSITION RATES

2 ALL COMBINATIONS 0 0

p*=-
D ' G P+M D

M * = PtM D MG D

-1 MU=MUtl

(P-P,-P,*) xp

I

(M-M~-M~*

-3)x,4

(l-&)(P-PD-PD*)

xP (M-MD-~D*)hM

(P-PD-PD*-j&)Xp (M-M~-M~*

- &)'M

B* = (B-BD) or 3 whichever is greater

BU = BU t 1

tBeBD) xB

(B-BD-2)XB

(B-BD-2)hB

-7 B" 'B

(B-BD-2)XB

Gu = Gu + 1 S(FAIL)

2(P-PD-PD*

tM-MD-MD*)XG
^W

2(P-PD-PD*

tM-MD-MD*

-3)AG

2(P-PD-PD*

tM-MD-MD*

-3)AG *.-

(2-3

0

2xp+2hBt4;\GDIs
.

(P-PD-PD*

tM-MD-MD*)XG

tM-MD-MD*)XG

- - 5AG
0

2~M+2~B+4~GDls
.

I

$2XBt$P-P,-P,*)+,

2 + T (M-MD-MD*:AM

t + (P-PD-PD*tM-MD-MD*)AGDIS

.4A tx + P
GDIS Gen P+M A'
M

+F+MM B + 2A

- _..-e..>_-.
-(T-zppg-i, -. -- -’

+ (M-M -M *-M)X DD UM
+ (B-B~-B")x~

t 2(P-PD-PD*tM-MD-MD*

- Po-MU)XG

TABLE 5.2

RECOVERY TRANSITION RATES

S(INITIbiL) S(FINAL)

u>o PD=PD~l,P"=P"-l MD=q)+l,M "'M"'1 BD=BD+l,BU=BU-1 fD=GD+l,GU=GU-1

72

MODEL PARAMETERS

.

1. Initial Configuration

P - Number of Processors.
M = Number of Memory units.
B - Number of Buses.
G = Number of BGUs = 2 (P + M)

2. Component Failure Rates

1P = Processor Failure Rate.

%l = Memory Failure Rate.

xB = Bus Failure Rate.

xG = BGU Failure Rate.

3. Recovery Rates

6P = Processor Failure Recovery Rate.

54 = Memory Failure Recovery Rate.

bB = Bus Failure Recovery Rate.

6G = BGU Failure Recovery Rate.

There are a number of state transitions that lead to a catastro-
phic failure, that is, the system failure. The following combinations
of undetected double failures were assumed to cause such transitions.

1. Two processors or memory modules fail in a single
triad, or two active buses fail.

2. One BGU fails in the disable mode and a processor or
memory unit in the same triad (but with a different
BGU) also fails.

3. One active bus fails and a processor or memory unit
talking on one of the good active buses fails.

4. One active bus fails and a BGU on a good active bus
fails in the disable mode (disabling its associated
processor or memory unit).

73

5. Two BGUs in the same triad but belonging to different
units fail in the disable mode.

The following combination of three faults (undetected or detected)
causes the system to fail.

Two BGUs in a single processor or memory unit fail in the enable
mode and the associated unit also fails.

It was further assumed that all triple undetected faults cause
system failure. This assumption simplifies the model a great deal by
reducing the number of states in the model. However it does not
contribute to errors in any significant way since the probability of
having 3 undetected failures is of the order of magnitude lo-l6 (assuming
100 units with a failure rate of low4 per hour and a recovery time of
1 sec.). In any case, it is a conservative assumption.

The last assumption, inherent in the truncated Markov model, is
that all quadruple faults (detected or otherwise) cause system failure.
Based on the above assumptions, the state transition rates may be
derived as follows.

The transition rate for type I and III transitions is determined
by the product of the unit failure rate and the total number of active
units of the type involved in the transition. For example, consider
the following transition.

S(U = 0) - s (u = 1, Pu = 1)

This transition involves the failure of a processor unit. There are P
units of this type. Of these PD units have failed. In addition, due
to the failed BGUs, of which there are G D' some processors have been
disconnected. These can be estimated to be

P =
P+M GD = pD*

The required transition rate therefore equals (P - PD - PD*) Xp.
Similarly, the number of active BGUs for the transition

s (U = 0) -S (U= 1, GU= 1)

equals 2 (P - PD - PD* + M - MD - MD*).

This is twice the sum of the active processor and memory units. When
there is an undetected bus fault, the transition rate from this state
to the failed system depends on the type of the bus unit involved. If
the fault is in one of the spare buses, the system can tolerate another

74

failure of any type. However, if the fault lies in one of the active
buses, a number of second failures could bring the system down. Let us
assume that the rate at which such critical faults occur is X per hour.
As a first approximation the probability that the failed unit is one of
the three' active buses is

3
B - BD l

Here B - BD is the total number of buses that could have failed. There-
fore the effective critical failure rate or transition rate becomes

3x
B-B * D

A computer program was developed to solve the 146-state Markov
model numerically. This program, encoded in the PL/I language is listed
in Appendix I. The following algorithm was used to solve the model
numerically.

gk+l = At . Ek * Q

Here, P = state probability vector (146 X 1) -

Q = state transition matrix (146 X 146)

rk
= km state probability vector

Ek+l = state probability vector after a time-step At.

Q(I,J) = transition rate from state I to J

Q(I,I) = computed such that row I sums to unity.

The time-step At is chosen such that the fastest transition rate
in the system is less than unity. Selection of the time-step is
affected by two conflicting factors, the accuracy of the results and
the computational speed. Smaller steps result in more accurate results
but require more computer' time. Figure 5.4 shows the system failure
probability due to lack of coverage for a baseline system configuration
(see Table 5.3) as a function of time. Results were obtained with three
different time-steps as shown in Fig. 5.4. A time-step of 10 msec was
chosen based on these results to solve the Markov model for other
configurations.

The following results were obtained regarding the probability of
system failure due to a lack of perfect coverage (PFc).

First of all, the system failure probability increases linearly
as a 'function of time, as evidenced by the results shown in Fig. 5.5.

75

12

10

8

lo-l!

6

. - TIME STEP = 2msec
. l

. l -.-e--.., ,.

I I I

200 400 600

msec
Figure 5.4 Effect of Time Step Variation on Markov Model Solution.

A
.

b

v- TIME STEP =lO msec

TIME STEP = 4 msec
8

A
8

8

-
800

.8

.6

t Seconds
Figure 5.5 Prob. of Failure Due to Lack of Coverage and its Rate of Change.

PfC (t)

5

4

LO-l2

3

,

Although these results apply only to the first minute of the computer
operation a simplified Markov model was solved to extend the same
results to more than five hours. This second model is described in a
later section of this chapter.

A number of runs were made to assess the impact of variations in
the system configuration and the component failure and recovery rates
on the system reliability. In all these cases the iterative solution of
the Markov model was continued to a point where the failure probability
attained a nearly constant slope. This value of the slope was used to
compute the system failure rate per hour, and is shown in Figures 5.6
to 5.9. In Fig. 5.6 it is seen that improving all the component
failure rates by one order of magnitude results in the betterment of
the system reliability by two orders of magnitude. On the other hand,
changing the recovery rates ten-fold produces a ten-fold change in the
system reliability as shown in Fig. 5.7. In both of these cases the
failure rates or the recovery rates were varied collectively for all
types of units.

The next two figures show the effect of varying the failure and
recovery rates for each type of unit individually. It is seen that the
system failure probability due to the lack of coverage is most sensitive
to variations in the processor and memory failure rates around the
operating point defined by the baseline parameters. It is least
sensitive to the bus failure rate variation. This is simply due to the
fact that the processor and memory failure rates are the highest of all
at the operating point, and therefore contribute the most to the system
failure probability. Similarly, since the recovery time from a BGU
failure is the greatest, the system reliability is most affected by
changes in this parameter.

Figure 5.8 also shows the effect of varying the number' of units
in the multiprocessor. This variation does not significantly impact
the system failure probability due to the lack of coverage. In fact,
decreasing the number of processors improves the system reliability a
little since there are fewer processors to contribute to the system
failure rate.

5.3 Second Markov Process Model of the Multiprocessor

The model described in the preceding section has 146 states.
Although this has the benefit of representing the actual system
accurately, it suffers from being computationally complex and inefficient.

78

PFC(l Hour)

‘lo-

lo-

10-l

Figure 5.6 Failure Rate Factor: A.

79

1o-8

1o-g

lo-lo

lo-l1

Figure 5.7 Recovery Rate Factor p.

80

1o-8

1f9

lo-lo

PfC(l Hour)

/
PROCESSOR

B-4
P=12, G=42

BGU

BUS

\ M=6, G=42

.“--
I

10-l 1 10

Figure 5.8 Component Failure Rate Factor.

81

BUS

PROCESSOR

- BGU

Figure 5.9 Component Recovery Rate Factor.

-82

The computation of the system failure probability was therefore limited
to a short time span, and it was assumed based on these results that
the failure probability continues to grow linearly as a function of time.
To verify this assumption, a second Markov model was developed with
only 11 states, as shown in Fig. 5.10.

On comparison of this model to the earlier one of Fig. 5.2 the
major differences become obvious. First, the detection of a failure
returns the system to the perfect state, which is the starting state.
This approximation was based on the fact that this model is being used
to predict the failure probability due only to the lack of coverage and
not due to the exhaustion of spares or equipment. This second phenomenon
is considered separately in a later section. The reason one can
separate the effects of these two mechanisms of failure is that each one
dominates the system reliability in a differenttime span.

The second approximation involves truncating the model to two
faults. That is, any combination of three faults is assumed to cause a
system failure. In this case the approximation can be justified based
on the amount of error caused by the truncation of the model as explained
below.

Figure 5.11 shows that in the steady state in a typical case the
system failure rate is 1.87 x 10 -10 per hour. Of this 1.85 x 10 -10 is

contributed by double faults. That is, the triple fault combinations
increase the system failure rate only by one per cent. Therefore
truncation of the model at 2 faults causes less than one per cent
inaccuracy in the results.

The computer program to solve this model is listed in Appendix II.
The result is presented in Fig. 5.12. The system failure probability,
in fact, does increase linearly'with time, assumed earlier, for the
first five hours. The iterative solution of the Markov model was
stopped at this point. However it is obvious that the failure
probability will continue to grow linearly as long as the probability of
the system ,being in the "All Good" state (see Fig. 5.11) remains
almost unity. This will be the case for at least several hundred hours.

5.4 Combinatorial Reliability Model of th.e Multiprocessor

So far we have investigated the effect of the lack of perfect
coverage on the system reliability. This analysis showed the degree of
susceptibility of the system to two or more near simultaneous faults,

83

-- -+ MODULE FAILS

9 SYSTEM RECOVERS

--- SYSTEM FAILS

Figure 5.10 Simplified Cards Markov Model.

84

1.85 x 10-l'

STEADY STATE
PROB. =: 1.0 7.8~10-~ 2.7x10-l3 1.87~10-~'

per hour

Figure 5.11 Relative Contributions to System Failure State.

85

-

-
-

PROB, OF SYSTEM FAILURE DUE TO

LACK OF COVERAGE

1 2 3 4 5
HOURS Figure 5.12

that is, the system failure probability due to non-zero time taken to
detect, iden.tify and recover from a failure. It was assumed during
this analysis that enough units of each kind were still in working
condition to perform all the critical tasks. Eventually, of course,
enough failures would occur SO that the supply of spare units would be
exhausted and the system would degrade in compuational power and hard-
ware to a point where it could no longer perform the minimum work load
required for mission success. To study this mechanism of failure, it
was assumed that the time to detect, identify and recover from a
failure equals zero. That is, the system has perfect coverage. With
this assumption, the problem of determining the system failure proba-
bility as a function of time and number of units of each kind becomes
a simple exercise in combinatorial analysis.

Figure 5.13 shows a link diagram of the system depicting each
unit as a serial or a parallel link in a chain that must remain unbroken
for the system to function successfully. Starting from the left, the
first group of parallel links represents P processors. Let us assume
that a minimum of PO processors, MO memories and B. buses are required
for flight critical performance. A BGU failure is considered to be an
effective processor or memory failure. Therefore, in the first group,
at least PO out of P links must remain operational for the system to be
successful. Here each link has a failure rate of hp + 2hG. Similarly,
the next two link groups represent the memory and the bus units
respectively.

Using the link diagram of Figure 5.13 one may write the following
expression for the system failure probability by inspection.

PFS = 1 - PSS
P

PSS = c - PSG2 . PSP) P-NP.
NP=Po

(Ep) (PSG2. PSP)NP (1

M
c PSM)NM (1 - PSG2 * PSM)"-NM.

NM=Mo
!;M, (PSG2.

B
c

MB=Fo
(iB) PSBNB. (1 - PSB)R-NB.

Here, PF = Probability of failure of a processor (P), memory (M), BGU (G)
or the system (S),

and PS = Probability of success of P, M, G or S.

87

DETERMINATION 0F NUMBER 0F sPm3s FOR mai TYPE OF MODULE

MINIMUM EQUIPMENT REQUIRED FOR FLIGHT CRITICAL PERFORMANCE: PO, MO, B.

RELIABILITY LINK DIAGRAM

LINK FAILURE RATES

MIN NO. OF LINKS
REQUIRED To SURVIVE

b xp + 2XG XM + 2AG AB I I

P
0 MO BO

Figure 5.13

A computer program was written in the PL/I language to compute
the system failure probability using the above equation. Figure 5.14
shows the results for the baseline parameter values listed in Table
5.4. It was assumed that at least three processor triads and one
memory triad will be required to do all the flight critical tasks.
Initially, the probability of failure due to exhaustion of spares is a
few orders of magnitude smaller than that due to simultaneous failures.
However the former increases at a much faster pace. Therefore at some
point approximately a few hundred hours from the beginning the likeli-
hood of the baseline system failing from a lack of equipment becomes
stronger than from simultaneous failures. This predominence of each of
the two failure mechanisms in a different mission time-span justifies
their independent evaluation. The combined system failure probability
due to all modes of failure is discussed in the last section of this
chapter.

5.5 System Failures Due to BGU Enable Failures

A Bus Guardian Unit links the processor and memory modules with
the buses. Its function is to prevent a failed processor or memory
unit from corrupting information on the buses. However a BGU is also
susceptible to hardware failures. BGU failures may be divided into two
classes: (1) Disable Mode and (2) Enable Mode.

In the disable mode, the unit associated with the failed BGU
can no longer communicate on the bus. This is akin to losing a spare
unit. However the second failure mode is not so benign. In the enable
mode, a failed BGU connects its associated unit to more than one bus.
Of course, two such failures do not harm the system until the associated
unit also fails. Then the result is a catastrophic system failure. If
there is more than one BGU in each processor or memory module, then all
of them have to fail in the enable mode before the system is affected.

The following equation expresses the system failure probability
due to the BGU enable failures intermsof the processor, memory and
BGU failure probabilities.

FS = 1 - (1 - PFP * PFGE2)' (1 - PFM . PFGE 2M)

Here PF = probability of failure of a processor (P), memory (M) or
the system (S),

and PFGE = probability of BGU failure in the enable mode.

.

89

..I i
2 BGU SYSTEM

200 400 600 800 1000 HOURS
Figure 5.14 Prob. of Failure Due to Exhaustion of Spares.

90

I -

TABLE 5.3
BASELINE PARAMETER VALUES

SYSTEM CONFIGURATION

Processors = 15
Memory Units = 9
Buses = 5
BGUs = 48

FAILURE RATES PER HOUR MTBF

Processor = 1o-4 lo4 Hours
Memory = lo-& ' lo4
Bus = lo+ lo6
BGU = 1o-5 lo5
BGU Enable = 5 x 10-6 2 x lo5
BGU Disable = 5 x lo+ 2 x lo5

RECOVERY RATES (Time to Detect, Identify & Recover From a Failure)
RATE TIME

Processor = 1 per second 1 second
Memory = 1 1
Bus = 10 0.1
BGU = 0.1 10

TABLE 5.4
BASELINE PARAMETER VALUES

INITIAL SYSTEM CONFIGURATION MIN. REQ'D FOR FLT. CRITICAL PERFORMANCE

Processors = 15 PO = 8
Memory Units = 9 MO = 2
Buses = 5 B. = 2
BGUs = 48

FAILURE RATES

Processor
Memory
Bus
BGU
BGU Engble
BGU Disable

PER HOUR

1O-4
1o-4
lo+
1o-5
1 x lo+
9 x lo+

MTBF

lo4 Hours
lo4
106
lo5
lo6
1.1 x lo5

91

This equation assumes two BGUs in each processor and memory module.
Figure 5.15 shows the system failure probability due to this failure
mechanism as a function of time. Baseline parameter values from Table
5.4 were used to arrive at these results. It was assumed that the
enable mode failures can be biased to be less probable than the disable
mode ones. The impact of improving the BGU enable failure mechanism is
also shown in the same figure. An order of magnitude improvement in the
BGU failure rate decreases the system failure probability by two orders
of magnitude.

Another way to diminish the system susceptibility to enable mode
failures is to increase the number of BGUs in each module. Figure 5.15
shows the system failure probability when each module has 3 BGUs. The
result is a 3 order of magnitude decrease in failure probability.
However it also slightly increases the system failure probability due
to the exhaustion of spares as shown in Fig. 5.14. This mode of failure
also impacts system availability or dispatch reliability. This is
dealt with in the next section.

5.6 System Availability/Dispatch Reliability

Dispatch reliability in the present context may be defined as
the probability of having the computer system before each flight in a
condition good enough to meet the mission reliability requirements.
That is, there should be enough operating modules in the system to
assure a given probability of success at the end of, say, a ten hour
flight. Dispatch reliability is important because it directly affects
system maintenance cost. For an airline, a high dispatch reliability
of the computer system could mean fewer maintenance points along its
routes with consequent savings in operating cost.

A given level of dispatch reliability can be achieved for the
present system by varying the number of spares for each type of module.
A relationship is developed between these two variables as follows.

Table 5.5 re1ate.s the system size to.the system reliability for
the baseline failure rates defined in Table 5.4. Let us assume that
the required probability of failure at the end of a 10 hour flight is
1o-g or smaller. It is now possible to pick out from Table 5.5 a
minimum system size that will meet the required mission reliability
criterion. This system size is 11 processors, 5 memory units and 3 buses.
To this basic size we would have to add enough spares to meet a required
dispatch reliability PS at a time T. Table 5.6 shows three system

92

lo+

1o-8

lo-lo

lo-l2

lo-l4

/ 2 BGU SYSTEM, F,=
/

ti lo+ PER HOUR

2 BGU SYSTEM,

* 3 BGU SYSTEM, FG = 10-o PER HOUR

I

200 400 600 800 1000 HOURS

Figure 5.15 System Failure Prob. Due to BGU Failures in Enable Mode.

93

TABLE 5.5

EQUIPMENT FAILURE PROBABILITIES
P = 11, M - 5, B = 3

OPERATING EQUIPMENT BEFORE PROB. OF FAILURE DUE TO LACK OF
TAKE-OFF EQUIPMENT @ 10 HOURS

P M B

15

12

12

11

11

11

11

10

<lo-l6

2 x lo-l2

3 x lo-lo

9.8 x 10-l'

9.9 x lo-lo

7.9 x 1o-g

4.4 x lo+

2.1 x 1o-7

TABLE 5.6

INITIAL CONFIGURATION SO THAT AT LEAST 11 PROCESSORS, 5 MEMORY UNITS
AND 3 BUSES WILL SURVIVE WITH A PROB. PS AFTER 300 HOURS

DESIRED REQUIRED CONFIG.
PS P M B ACTUAL PS

0.99 13 7 3 0.988

0.995 14 7 3 0.996

0.999 15 8 4 0.9998

94

configurations to meet three different dispatch reliability requirements
at a fixed time T equal to 300 hours. This figure was chosen for time
because for most airlines an aircraft would undergo periodic engine
maintenance at its home base, which has all the maintenance facilities,
in 300 hours or less. For a fixed system configuration, decreasing the
aircraft turn-around time would obviously increase the system dispatch
reliability. This is shown in Fig. 5.16 for each of the three system
configurations of Table 5.6.

For the present system, the probability of failure during a
flight depends not only on the amount of equipment operating before
take-off but also on the number and type of failed units in the system
before take-off. This is due to the BGU enable mode failures described
in the preceding section. Table 5.7 shows the system failure probability
after 10 hours for various initial configurations of failed modules.
It is evident that the most significant contribution to the system
failure probability is made by a BGU failed in the enable mode. The
probability of at least one BGU failing as such in the baseline system
in 300 hours is 0.015. That is, the dispatch reliability would be
0.985 considering only the BGU enable failures.

One way to'reduce the impact of BGU failures on the system dis-
patch reliability is to increase the number of BGUs in each processor
and memory module from two to say, three. The result is again shown
in Table 5.7. For this system configuration, the dispatch reliability
for a 300 hour aircraft turn-around period would increase to 0.999994.
The next section summarizes the results of the relibility study.

5.7 Summary

So far we have investigated three different mechanisms of failure
which can result in a catastrophic system failure. These are

1. Occurrence of near simultaneous failure of two
or more units,

2. Failure of Bus Guardian Units in the enable mode,

3. Exhaustion of equipment.

It was stated earlier that each cause is predominant during a different
time span. Therefore it was possible to study the probability of system
failure due to each cause separately. Figure 5.17 combines the results
of the three different studies. It shows for a representative case the

95

PROBABILITY OF NON-SURVIVAL OF

P = 11 PROCESSORS

= 5 MEMORY MODULES

B = 3 BUSES

INITIALLY

INITIALLY

10-6 ’ I I I I I I

50 100 200 300 400
HOURS

500

FIG, 5.16 PROBABILfTY OF SPARE MODULE EXHAUSTION, EXAMPLE

1O-2

1o-4

10-6

1o-8
a
-4

lo-lo

lo-l2

lo-l4 .

Prob. of System Failure

////‘7
MODULE FAILURES /

/ / EXHAUSTION OF SPARES
/ /

BGU ENABLE FAILURES /

/
/

1 10 100 1000 HOURS

Figure 5.17

TABLE 5.7
ANALYSIS OF SYSTEM FAILURES DUE TO BGU FAILURES IN ENABLE MODE

TOTAL EQUIPMENT: P = 15, M=9
FAILURE RATES:

AP
= 10-4 per hour
= 10-4

P or M

Ea

AM per hour

x GE
= 10-6 per hour

,BGU BGU

INOPERATIVE EQUIPMENT PROB. OF SYSTEM FAILURE
BEFORE TAKE-OFF AT 10 HOURS

NONE
1 x lo-l3
1 x lo-lo

2 x lo-lo

3 x lo-lo

1 x 1o-8

Id El 2 x 1o-8

HaHH 2 x 1o-8

X

a 1 x 1o-5

I
a 1 x 1o-3

lia 3 BGU SYSTEM 1 x lo-l3

lid 3 BGU SYSTEM 1 x 1o-8

PROB. 1 BGU FAILS IN ENABLE MODE (OUT OF 48 BGUs) IN 300 HRS: 0.015.
PROB. 2 BGUs FAIL IN THE SAME MODULE (OUT OF 72 BGUs) IN A 3 BGU

SYSTEM IN 300 HOURS: 6.5 x 10-t

98

system failure probability due to all possible failure modes for a time
period of one thousand hours. It is seen that initially the probability
of catastrophic system failure is low and dominated by near simultaneous
failure of two or more units. Eventually, the system may fail due to a
lack of spares.

Results regarding system availability can be summarized as
follows. The BGU enable mode failures can have significant impact on
the system availability for the baseline system configuration and
failure rates. This can be almost totally eliminated by biasing BGU
failures against the enable mode or by having three BGUs in each
processor and memory module. Having taken care of this, the baseline
system is seen to have a dispatch reliability of greater than 0.9999.

99

CHAPTER 6

AN APPROACH TO SOFTWARE RELIABILITY

This chapter describes the specific means by which a low-cost
systemcouldsupport development of software for the fault-tolerant
multiprocessor computer system.

6.1 Introduction

Software development has proved to be overly expensive, in terms
of both initial costs and overall life cycle costs. Advanced software
development tools are required to ensure manageable software life cycle
costs. This chapter introduces and justifies a comprehensive software
methodology called Higher Order Software (HOS) which is applicable to
software development for the multiprocessor.

HOS is a discipline which lowers software life cycle costs. The
basic HOS axioms, tools, and methods have been described elsewhere [51.
This chapter introduces the HOS tools and describes their functions
briefly. Subsequent portions of this chapter describe applicable HOS
methods and detail how these HOS facilities could be implemented at low
cost.

6.2 Higher Order Software Methodology

HOS originated during software development for APOLLO and for
SKYLAB. The APOLLO software development required approximately 2,000
man years, during which extensive software anomaly lists were maintained
for later analysis. These data show that 13% of the software errors
uncovered during systems integration were analytical errors, such as
specifying sine when cosine was intended. An overwhelming 73% majority
of the errors, on the other hand, were associated with interactions be-
tween modules. These errors fall into categories such as misinterpreting
s.ubroutine calling sequences, passing the wrong arguments, treating
variables in the wrong way, misinterpreting interface specifications,
and the like. Because most errors involved interactions between modules,
it would have been little good to "prove the correctness" of individual

100

modules. The APOLLO experience showed that programmers can in general
develop correct modules. Most errors arise in interfacing modules in-
correctly. Accordingly, HOS methods concentrate on ensuring that
interfaces between modules are correct.

In the course of HOS development, six axioms concerning relation-
ships between system modules were stated. These axioms are defined
rigorously in 151 and stated informally at the end of this chapter. If
all system components interact in a manner consistent with the HOS
axioms, the interface errors which so plagued the APOLLO software
development effort are automatically eliminated. The effect of follow-
ing the HOS axioms is to guarantee interface consistency on a SyStem-
wide basis. This would-have eliminated 73% of the APOLLO software
integration errors.

Programmers tend to regard the HOS axioms as obvious, and claim
to follow them. Experienced managers,however, are well aware that
programmers do not always program in a systematic manner. In order to
ensure that systems follow the rules, HOS incorporates analyzers which
detect system specifications and module interactions which are not
consistent with the axioms. The HOS analyzers and other automatic tools
are listed and described briefly here, and are discussed in detail below.

1. Specification Language and Specification Analyzer.
The specification language is used to describe relationships be-
tween system modules in an unambiguous manner. The specification
analyzer examines the system specifications for relationships
between modules which are not consistent with the axioms. The
analyzer also generates a diagram showing how the system compon-
ents interact. The system description presented to the specifi-
cation analyzer is not intended to describe a specific system
implementation. This function is served by other HOS tools.

2. Higher Order Interface Language (HOIL).
A HOIL is used to implement the software portion of the system
after it has been described using the specification language. A
HOIL is a programming language in which statements describing
interactions between modules can be easily identified so that
they can be checked for consistency. A HOIL may or may not
contain other facilities such as supplied by compiler languages.

101

3. Interface Analyzer.
After modules have been implemented using a HOIL, the interface
analyzer examines interfaces between the modules to determine
whether or not the interfaces are consistent with the specifi-
cation. This is feasible because a HOIL provides information
which makes interfaces easy to locate.

4. Control Mapper.
The mapper also examines interface specifications after the
modules have been implemented using the HOIL. The mapper draws
a picture of the relationships between modules, which is checked
to be sure that the specification has been implemented properly.
This map reveals the relationship between the various software
components, and serves as a documentation aid.

5. Concordance Generator.
The concordance program produces a list of all data in the system
and tells where each datum is referenced. References are cate-
gorized in terms of examine only, store only, and both store and
examine. This list makes it easy to find all modules which
reference a given datum, regardless of the different names which
are used in different modules.

6. Narrative Documentor.
The documentor collates the program listing with descriptions of
the data used by the program. When data are referenced in a
module, the documentor copies the data description into the
program listing. This ensures that data have to be documented
only once, and that the documentation and the source listing are
kept together. This is helpful during maintenance.

Most of these facilities do not require any more information than
is already available to the language processor, and some compilers
provide part of this information to users. All FORTRAN compilers, for
example, are aware of the uses of all variables which are referenced in
a program, but many do not print this information inthelisting.
Furthermore, FORTRAN compilers. do not generate information which can be
examined for consistency between modules. The HOS specification
analyzer ensures that only proper relationships between modules are
included in the design, and a HOIL processor generates information
needed so that other routines can verify that the interfaces described
in the specification have been implemented properly. The information
provided by a HOIL processor makes it possible to generate the data

102

concordance and control map economically. These tools fit together
smoothly because the fundamental HOS axioms are well chosen. Not only
do the axioms seem obvious, but when systems are designed to be consistent
with the axioms, they become easier to understand, maintain, and modify.

6.2.1 Specification Language

The HOS specification language allows a designer to describe
system structure and control flow unambiguously. The description of
relationships between the parts of a system is independent of how the
parts are implemented. For example, information is transmitted to and
from hardware modules via wires. Information is passed between software
functions through the calling sequence. Finally, if work is performed
by a human operator, information is passed via a display and keyboard of
some sort. The specification language allows all of these information
transfers to be described in the same way. This separation between
specification and implementation allows the design to be completed
before final partition between hardware and software, so that tradeoffs
between hardware and software can be optimized over the entire design.
The important concept is that the specification language provides a
consistent mechanism for describing information flow and control
structures. This eliminates interface errors which are not otherwise
found until system integration, by which time they are costly to
eliminate.

Most system specifications and designs are ambiguous. There are
often difficulties in understanding the intent of the specifications,
and time is lost in verifying that the interfaces are consistent. The
HOS specification language is formalized so that a specification can
be checked automatically for consistency before implementation. This
eliminates inconsistencies in the specification which are usually not
found until well into the implementation. In addition, as modules are
implemented, their interfaces are compared with the specification.

The specification language does not ensure that the modules which
implement the specification will do what was originally intended. It
does, however, make it possible to verify interfaces between parts of
the system, and ensures that all portions of the specification use a
common syntax. The purpose of the specification language is to minimize
confusion by ensuring that all parties express their part of the design
in the same language and that each part of the system is consistent with
the rest of the system. Because the HOS specification only defines

103

interfaces between parts of the system, it is not possible to automatical-
ly generate the system from the specification. It is, however, possible

.to add module definitions to the interface specifications, and have the
specification evolve into the final system.

6.2.1.1 Control Structures

In present design practice, complex problems are divided into
smaller problems, each of which is defined as a new problem. The divi-
sion process continues until the problems are small enough to solve.
Hopefully, the aggregation of the small solutions solves the original
problem. In order for this to work, it is necessary to define problems
and their solutions so that the solutions fit together properly. One
of the functions of HOS is to monitor the process of dividing problems
to ensure that interfaces between parts of the solution are correct.
The HOS axioms define a set of valid methods of dividing big problems
into small problems so that the solutions work together. In other words,
HOS formalizes present intuitive design practices so that system
components work reliably and predictably.

Solutions which collectively solve a larger problem can be
thought of as occupying a common hierarchical level which is subordinate
to the level occupied by the larger problem. The larger solution may
be part of the solution of an even larger problem, and so on. This
hierarchy is the result of the decomposition of functions into simpler
functions. The function decomposition is carried to the point where
the functions can be implemented easily.

The lack of standard terminology for parts of a solution causes
a great deal of confusion between solutions to problems and the means
used to implement the solutions. Mechanisms used to solve problems are
referred to as subsystems, modules, components, functional modules,
subroutines, functions, or whatever, depending on the perspective of
the persons responsible for the solutions.

For the sake of defining a precise term, "function" refers to any
problem solution, no matter how the solution is implemented. A function
may or may not be made up of subordinate functions. The defining
characteristic is that a function is given information, operates on this
information, and gives back other information.

104

It is common to refer to a "large" function as a "system". The
formal HOS terminology does not draw distinctions between functions
which are made up of subordinate functions and functions which are not.
However, it is satisfying to have a special word which refers to the
topmost function and it is common to refer to this function and all of

its subordinate functions collectively as a "system".

The relationship between functions is called a "control structure".
The control structure describes information flow between functions and
determines when each function is invoked. When the, control structure
is drawn out so relationships betweenfunctions are visible, the result-
ing picture is called a "control map". The HOS specification language
is really a means of describing a control structure. This description
lists the input variables and output variables for each function. A
function description, of course, may consist of a number of subordinate
functions. The specification analyzer enforces rules based on the HOS
axioms which restrict the relationships between functions so that the
interfaces are correct. The specification analyzer examines the
function descriptions and maps the specified system. The map generated
by the specification is later compared with the map showing relationships
between the functions as they are implemented. This highlights
differences between the specification and the functions which are
actually implemented.

An initial high level specification contains only a few functions,
and it is relatively easy to keep track of interfaces at that point. As
the design evolves, however, more and more functions are added. Current
system specifications are checked manually at several points in the
design cycle, but this is too costly to be done at each stage of refine-
ment. The automatic HOS analysis may be repeated as often as necessary
to ensure that the specification is consistent at each stage before
work starts on the next stage. This ensures that errors are eliminated
at the earliest possible time. The analysis not only verifies that the
specified information flow is appropriate, but it ensures that the over-
all control structre is valid.

6.2.2 Higher Order Interface Language. (HOIL)

The HOIL provides the means by which the software portion of the
control structure is implemented. The purpose of any language is to
allow its users to communicate their thoughts to other parties. Computer
language processors are the intermediaries by which the programmer's

105

thoughts are rendered in a form which is comprehensible to the computer.
Compilers and assemblers examine statements expressing the desires of
the programmer in order to generate computer code sequences which per-
form the requested functions. Language processors not only generate
code to operate on the data types supported by the language, but in
addition generate code for subroutine linkage, parameter passing, task
invocation, and the like. In general, the more code sequences that are
generated automatically, the easier a language is to use. Furthermore,
the more computer-dependent details that are handled automatically, the
less the programmer has to know about the specific machine, and the
easier it is to transfer programs to other computers.

A Higher Order Language allows programmers to express operations
on variables but demands that variable usage in each module be consis-
tent with variable use in other modules. That is, HOIL statements which
manipulate variables can be located by the interface analyzer, which is
aware of global considerations regarding variable usage, and verifies
that such usages are consistent. Therefore, the HOIL not only generates
code sequences to operate on the variables, it also generates the
information required to verify that only appropriate operations are
requested.

Some compilers enforce consistent variable use within individual
modules. FORTRAN compilers, for example, automatically convert variables
to a common type before performing arithmetic. However, this does not
prevent a particular variable from being treated as integer in one module,
real in another, and complex in a third. Such inconsistent variable
usage usually causes errors, and such errors are often extremely costly
to locate. It would be cost effective to eliminate them on a global
basis using a HOIL and an interface analyzer.

Past efforts at making better software development tools have
assumed that these tools would emerge as additions to compilers and
augmentations of compiler languages. A common objection to the use of
a compiler to generate code for limited memory flight computers is that
the code generated by a compiler is usually less efficient than code
generated by hand. As will be shown below, hoever, it is possible to
obtain the benefits of a HOIL by augmenting an assembly language.

106

6.2.3 Interface Analyzer

A control structure which conforms to the HOS axioms is analogous
to a well-ordered military hierarchy. The design of the chain of command
assures that orders are accepted only from an immediate superior and
are transmitted only to the subordinate or subordinates responsible for
their execution. Orders or information which bypass the chain of
command are frowned upon. Such orders may be tolerated in a hierarchy
composed of humans, because people are sufficiently adaptable to work
out what to do under unexpected conditions. Functions, however, cannot
deal with the unexpected and therefore have no capability to "muddle
through". In a system structured according to HOS rules, no function
may be activated except in response to requests from above. No function
may access information unless the right to use it'is transmitted from
above, and all output information is returned only to the authorized
function.

Just as people in a hierarchy are tempted to try to obtain
information or exercise influence outside of channels, programmers are
tempted to "improve" software systems by distributing information in
unauthorized ways. Human functions are somewhat self-directing, and if
their input changes format without notice, they can often figure out
what to do. While unexpected changes merely inconvenience the human
hierarchy, they are disastrous in a software system. One of the most
common unauthorized software interfaces is for one subroutine to take
advantage of the fact that critical data are left in certain registers
by another routine. This saves a few machine cycles loading and storing
the variables, but the interface between the two routines is nonstandard.
When a maintenance programmer changes the register usage in the first
program, the other program blows up. This rule violation greatly
increases maintenance costs.

Checking the interfaces in a system is analagous to examining a
chain of command and ensuring that all relationships between members of
the hierarchy are correct. Not only must the communication paths be
appropriate, but the messages transmitted on these channels must be
germane. Only necessary information may be passed to a function, and a
function may only return information needed by its superior. The HOS
interface analyzer examines relationships between functions and
verifies that they correctly implement the control structure defined
using the specification language.

107

In a software system, functions are often called subroutines, and
information is passed between subroutines via calling sequences. The
interface analyzer examines calling sequences to determine the hierarchi-
cal relationships between subroutines and the information which is passed
between them. This illuminates the control structure which has been
implemented by the collection of subroutines. The control structure
realized by the subroutines is compared to the control structure
specified in the design, and discrepancies are noted. This allows HOS
users to be sure that a collectionofsubroutines actually implements
the intended confrol structure, and assures managers that the programmers
have followed the rules.

6.2.4 Control Mapper

The mapper uses information obtained by the interface analyzer to
draw a diagram showing the relationships between functions. This
hierarchical diagram contains basically the same information as the
specification, but is derived from the functions as they are implemented.
This makes the system structure visible, so that it can be compared with
the intended structure. It is possible, of course, that discrepancies
may result from design changes caused by unforeseen implementation
difficulties. In this case, the specification is changed to reflect
the realities of the implementation, but in either case, it is necessary
to resolve'any discrepancies.

The information in this version of the control map is somewhat
redundant with respect to the control map generated by the specification
language analyzer, but it is directed at a different audience. The
specification control map clarifies functional relationships for the
designer before implementation. The function control map illustrates
functional relationships which have been implemented using the HOIL.

Past efforts at generating system structure diagrams have
attempted to derive complete flow charts of each function by examining
the code. This has proved to be very difficult in the general case.
Systems structured according to HOS principles, however, are much
easier to diagram than systems which do not follow the rules. Further-
more, HOIL statements make the specifications of the relationships
between functions more visible, which simplifies the mapping task
significantly. As a result, the HOS control structure mapper is able
to illustrate the system structure clearly and accurately.

108

6.2.5 Concordance Program

The task of the concordance program is to list all modules which
affect data in the system. This information is obtained from the

. interface analyzer. The concordance is not intended as a design aid,
although it can be useful during system implementation. The concordance
is most useful during maintenance, when a programmer who is not familiar
with the overall system must quickly isolate the effects of a proposed
change. The concordance helps maintenance to be carried out with
minimal knowledge, and minimizes the probability that a change will have
unexpected side effects.

The importance distinction between the HOS concordance and past
concordance programs is that the HOS facility follows data, not names
which are used to refer to data. In most software systems, the names
by which one routine refers to data which it passes to a subroutine are
different from the names by which the subroutine refers to the same data.
Because it has proved difficult to coerce or persuade programmers to use
consistent variable names, it is necessary that the concordance program
track the renaming of data across module interfaces. As shown in the
example below, the HOS concordance lists fewer separate variable names
because it combines references to the same datum.

In addition to listing references to data which are passed
between functions, the concordance generator processes data which are
internal to a function. When data are internal to a function, concord-
ance generation is simply a matter of noting the line numbers of all
statements which refer to the name of the internal data.

6.2.6 Narrative Documentor

It is not uncommon for documentation to become separated from .
the code which implements the functions. Even when the documentation
is preserved, it usually is made obsolete as the system changes. The
HOS documentor automatically collates available documentation with the
program listing of each function, and flags functions which have been
updated without corresponding documentation changes. The documentor
has access to a library containing abstracts of each function and
descriptions of each datum. The documentor processes a function after
it has been processed by the interface analyzer and the concordance
generator. At this point, all data and all functions referenced by the
function are known, and the documentor appends the appropriate abstracts
to the function listing. This generates some redundant information,

109

because data descriptions are repeated whenever data are referenced, but
a maintenance programmer modifying a function finds all pertinent
information in the same place.

Another important advantage is that data descriptions and function
abstracts are maintained in the same data base as the source code.
Thus, whenever a function is changed, the documentor is aware of the
change, and signals that the documentation must be brought up to date.
As variables are added, the documentor demands that their descriptions
be added to the abstract file. At any time, management can interrogate
the documentor to determine how many functions have been changed without
corresponding documentation updates, and how many variables are undocu-
mented. This encourages programmers to keep the documentation current.
Not only does this eliminate the usual frantic documentation rush at
the end of the project, but documentation is actually available during
the project. It has been found that system documentation can be quite
useful during a project, especially when it proves necessary to replace
project personnel. New staff members can make use of the documentation
to familiarize themselves with the system.

6.2.7 Example

The following example illustrates the application of HOS
techniques to a very simple system. The example shows how the tools
are used, and what their outputs look like.

6.2.7.1 Development of the System Specification

As was stated above, the specification language is concerned
mainly with relationships between functions. Detailed function descrip-
tions are deferred until the functions are implemented. Because
function details are unimportant at this stage, the specification
language requires only that inputs, outputs, and hierarchical relation-
ships be defined.

For example, a function may initially be specified as

Y = F(X).

The input variable of function F is X, and the output variable
is Y. This is a sufficiently detailed definition of the function for
the purposes of the specification language. It may later be decided
that function F should be implemented with two subordinate functions,
Fl and F2. These subordinate functions are invoked from F, and passed

110

the data they need, The structure then looks like

Y = F(X)

Y = F2(G) G = Fl(X) .

Function F has been decomposed into two subordinate functions but
can be treated as a single entity if the level of detail provided by Fl
and F2 is not needed. The specification language analyzer observes that
~1 and F2 do not use variables which cannot be passed to them by their
parent F, and that they do not alter data which their parent is not
authorized to alter. In addition, the specification analyzer notes that
temporary variable G is created by one function and used by another on
the same level. The specification conforms to the axioms, and is passed.

At a later point in the design cycle, function Fl is further
broken down. The specification is altered to look like this:

Y = F(X)

Y = F2(G) G = Fl(X)
G = F4(P) P = F3(X)

The analysis is repeated to ensure that the change has not
resulted in an improper specification, and the design is complete.

In order for implementation to begin, the designer must describe
the functions and the variables to the implementation staff. The logical
way to do this is to write the function descriptions and put them in the
abstract file for the documentor. Thus, the function and data descrip-
tions are available from the beginning of the project, and are added to
the source listings from the beginning of implementation. This helps
the programmers keep the purpose of each function in mind as it is
implemented.

6.2.7.2 Use of the HOIL .------

The most important characteristic of the HOIL is that interfaces
and variable use are illuminated for analysis by other HOS tools.
Therefore, the following illustration shows only sample interface
statements. The interface statements required for a real system may be
somewhat more complex. This example does not show the process of
verifying that data passed between functions is treated consistently.
In a real situation, it is also necessary to inform the HOIL of all
variable types in order to allow the interface analyzer to verify the
use of the variables.

111

ENTRY(F) INPUT(X) OUTPUT(Y)

GLL(F1) INPUT(X) OUTPUT(G)

CALL(F2) INPUT(G) OUTPUT(Y)
. .
Y= . . .
RETURN
END(F)

ENTRY(F1) INPUT(P) OUTPUT(Q)
. .
CALL(F3) INPUT(P) OUTPUT(M)

CALL(F4) INPUT(M) OUTPUT(Q)
Q = . . .
RETURN
END(F1)

ENTRY(F2) INPUT(R) OUTPUT(M) . .
M= . . .
RETURN
END(F2)

ENTRY(F3) INPUT(L) OUTPUT(M) . .
M= . . .
RETURN
END

ENTRY(F4) INPUT(M) OUTPUT(N)
N = . . .
RETURN
END

Although there are very few functions implemented, and only the
interface statements are shown, the collection of listings obscures the
control structure. Even though the HOIL interfaces are easy to examine,
the control structure is not nearly as easy to see as it was in the
original specification.

The data flow is even harder to follow, because the programmers
have not used the same names to refer to the same data. In particular,
variable name M refers to one datum in function F2 and to an entirely
separate datum in functions Fl, F3, and F4. Manual analysis is quite
difficult for small systems, and impossible for large systems.

112

6.2.7.3 Interface Analysis

These HOIL statements are examined by the interface analyzer.
The analyzer finds the ENTRYs and CALLS which tell it which variables
are involved in th.e interaction between the modules. The analyzer notes
that F has the proper number of inputs and outputs, and that these are
passed to the subordinate functions of F. In addition, although this
example does not show the data type declaration statements, the
analyzer verifies that the data transmitted and received by the various
functions are of compatible types.

The programmers responsible for implementing Fl and F2 have
chosen different names for their references to variables X, Y, and G.
Depending on the managerial philosophy of the project, the interface
analyzer can either follow the name change or demand that the subordin-
ate functions use the names defined in the specification. In either
case, the analyzer finds that function F calls on two subordinate
functions Fl and F2, using variables X, Y, and G, as called for in the
specification. This verifies that the implementation of the interfaces
between function F and the rest of the system is consistent with the
specification. Further analysis is performed on the other functions,
and they pass depending on whether or not variable renaming is allowed.

6.2.7.4 Control Mapping

Because the HOIL implementation of the functions has obscured the
relationships between functions, the control mapper is used to re-illumi-
nate the control map. In this case, the map looks like this:

F
--Fl

--F3

--F4

--F2

This notation clearly illustrates the relationship between the
various modules. A more complex system would produce a more extensive
map, of course. This notation is somewhat more compact than the
original specification, and allows larger control maps to be printed on
a single page. The compact format is advantageous because this version
of the control map is likely to be generated often as implementation
proceeds.

113

6.2.7.5 Concordance Listing

The HOS concordance shows all data and where they are used.
Previous programs have generated global variable reference tables, but
they lack the capability of tracing data under different names through
module interfaces. In order to highlight the differences between a
conventional concordance and the HOS concordance, examples of both are
presented. Although a real concordance would provide the locations
within each function where data were referenced, these statement numbers
are omitted from the examples for clarity. The conventional concordance
for this example would look like:

Variable Uses

G F Stored F Referenced

F3 Referenced
F4 Referenced Fl Referenced F2 Stored F3 Stored
Fl Stored F4 Stored
Fl Referenced
Fl Stored
F2 Referenced
Fl Referenced
Fl Stored

This conventional concordance is not very useful because program-
mers have re-named variables at the interfaces to the various sub-
routines. This makes it impossible to determine which routines manipu-
late which data. The HOS concordance program has access to the output
from the interface analyzer. The analyzer traces data through the
various names used in the different modules. The HOS concordance is
much shorter, because there are fewer data than names, and the HOS
concordance has an extra column, giving the names which refer to the
data in each function. This illustrates clearly that variable M in
function F2 is not the same variable that is referred to in functions
Fl, F3, and F4.

114

Datum Vble Datum
Name Name References

G G F Stored F Referenced F2 Referenced as R
F4 Stored as N Fl Stored as Q

P .M Fl Stored F3 Stored F4 Referenced

X X F Referenced Fl Referenced as P F3 Referenced as L

Y Y F Stored F2 Stored as M

There are fewer variable names in the HOS concordance. This is
because there are really only four data- X and Y, which are the input
and output variables of function F, and G and P, which are the temporary
variables which pass data between the subordinate functions of F and Fl.
The datum name is obtained from the specification. The variable name
is assigned by the highest level function which refers to that datum,
no matter what names are used by other functions to refer to the same
datum. This concordance makes it possible to follow data use across
interfaces which may not use the same names to refer to the same data.
This information is vital to maintenance programmers. In order for the
programmers responsible for individual modules to be able to tell which
datum their names refer to, the narrative documentor adds the system
name to the variable list generated for each module.

This simple example illustrates the complexities of tracing data
use manually, and makes the 73% interface error figure from APOLLO quite
understandable. The HOS data flow tools eliminate these errors by
clarifying the effects of variable references and name changes. It
might be added in passing that as long as the interface analyzer can
isolate references to the original data names, it would be perfectly
possible for it to edit programs so that they refer to the common set
of names. This might be deferred until after system delivery, in order
not to unduly ruffle the programmers.

6.3 Implementation

The HOS rules have been shown to be effective in past software
development efforts. It is possible to verify the control structure
and module interfaces manually, but this is a costly process. It is
much better to automate the required analyses. The proposed interface
analyzer and HOIL are implemented as a single tool which is specifically
tailored for the fault-tolerant multiprocessor. The specification

115

language and control mapper are much more general purpose facilities,
and are therefore not treated furt!ler in this report. The other tools,
however, are specific to the multiprocessor and are described at much
greater length below.

6.3.1 Implementation of the HOIL and Interface Analyzer

The proposed HOIL is a low cost flexible extension of the assembly
language for the processors. The HOIL provides facilities for describ-
ing interfaces b$tween subroutines and for specifying how variables are
to be used. These interfaces between modules are analyzed to verify
that all interfaces are consistent, and that all variables are referenced
correctly. These verification facilities and interface specification
facilities, when added to the assembler, produce a HOIL and interface
analyzer designed specifically for the computer.

The HOIL is implemented as a pre-assembly macro processing step.
Macros are written to generate assembly language code for all necessary
inter-module interface functions. As each interface macro is written,
the analyzer is extended to verify its use. HOIL and interface analyzer
development are incremental processes, which can be carried as far as
necessary to support a particular application.

Whenever a variable appears in an interface macro, the analyzer
checks its type to ensure that the function being called treats it in
the same way. All system data used in a function are declared as part
of the interface expected by the program, and references to global
variables which are not listed are flagged.

In addition, whenever a variable name appears in the program, the
analyzer checks to make sure that it is being used in a manner consistent
with its type. In order to allow this, macros are written to generate
assembly code to perform arithmetic operations. Normally, when
variables participate in arithmetic operations, the operational logic
is obscured when the assembly language instructions for loading
registers, computing, and storing the result are coded individually.
However, the macro 11=11 allows such operations to be coded as:

A= B+C

The algebraic form of the expression is much easier to understand.
Also, the W=W macro processor checks the specifications of variables B
and C, and complains if they are not appropriate variables to be added

116

together.

An advantage of this approach is that if it is later decided to
add special purpose hardware or microcode to the computer, the macro
definitions may be changed to generate code to take advantage of the
new facility. This will not require changing the programs. In fact, if
the computer is provided in several versions which have different
facilities, the same programs can be assembled for different versions
by using different macro libraries..

6.3.1.1 Steps in Developme and Interface Analyzer --- ---_

A HOIL processor generates code for a specific computer, and must
be designed for the computer being used. The following steps are e
needed to develop the HOIL described above:

1. Examine the selected computer architecture and determine
how interfaces between modules are to be implemented. These
functions include such facilities as CALL, Define Data,
Receive Data, Fork, Join, Wait, Post, and the like.

2. Select an appropriate macro processor. There are many
suitable macro processors available.

3. Code macros to implement the necessary interfaces.

4. Write a program to scan source code for occurrences of
interface macros and check them for consistency.

5. Expand the function of the interface checker to verify the
use of variables.

6. Write a program to print the results of the interface
analysis as a data concordance.

7. Write a program to print the results of the interface
analysis as a control map.

Powerful general purpose macro processors are available at CSDL,
and can be used without further development. As it turns out, the
developers of the macro processors which are in use at CSDL were greatly
concerned with the portability of the macro processors themselves.
They wrote the macro processors in such a way that it is easy to install
and run them on different machines.

117

6.4 Justification

This section briefly explains how assemblers and macro processors
work in order to justify the above assertions concerning the practical-
ity of developing a HOIL based on macro processors.

6.4.1 Character String Mapping

It is possible to regard the operation of all computer language
processors as accepting an input character string and generating an
output character string. This process is often referred to as "mapping".
A compiler input string is the source program and the output string is
the object code which runs in the computer.

It is customary to,think of the source program in terms of indi-
vidual language statements. It is possible instead to think of the
program as one long input string which is divided into separate state-
ments according to some convention, such as the end of a card. In PL/l,
for example, the string form of the program is made explicit, because
a special character is needed to end a statement.

It is also possible to think of the object code as a character
string. Computer memory can be subdivided into characters, and a pro-
gram in core can be thought of as one long string of such characters.
The most striking difference between source and object strings is that
object code strings do not make sense to most human readers. It is
interesting to note that the computer's string is usually much shorter
than the human's.

6.4.2 Assemblers

The function of the assembler is to map a string which a human
can read into a string which a computer can read. This mapping process
is straightforward. Assemblers essentially process three kinds of data:
labels, opcodes, and operands. Labels are used to refer to specific
points in the program. In order to be able to use the labels, the
assembler must first examine the program to learn where they are. As
each label is found, it is put in the label table along with the current
offset from the beginning of the program. This offset is the value of
the label, and the label defining pass is normally referred to as PASSl.
After defining the labels, the assembler makes PASSZ. This time, it
looks up each opcode in a table, and learns the numerical opcode for it
and the number of operands to expect. It then looks up the operands in
the label table and determines the numberical value of each. Finally,

118

the assembler places the value of the opcode and the values of the
operands in the output string.

6.4.3 Macro PrOCeSSOrS

A macro processor implements a somewhat more complex mapping
function than the assembler. The number of opcodes in an assembler is
usually defined in advance, and the table is built into the assembler.
A macro processor, on the other hand, allows different sets of maps to
be defined by the user. The definitions of these maps are called macros.
The collection of macros defines the overall map from input string to
output string.

A macro is defined by first giving a sample of each recognizable
input substring followed by the output substring to which it is to be
mapped. The macro processor searches the input string for substrings
for which a macro has been defined. Input substrings for which there
is no match are added to the output string without change, while input
substrings for which there is a match are replaced by the specified
output substring.

The process of generating the output substring in response to a
specific input substring is somewhat complex. The macro definition not
only includes characters which are to be added to the output string but
instructions to the macro processor itself. These instructions may
cause the macro processor to remove additional substrings from the in-
put string and copy them into the output substring in specific places.
For example, the assembly language statement for a subroutine call may
be GOSUB followed by the name of the subroutine. The macro definition
for a simple CALL macro which uses this instruction follows:

MACRO
CALL &PARAMETER
GOSUB &PARAMETER
MEND

The MACRO and MEND statements delineate the beginning and end of
the macro definition. The first line describes the input substring
which is to be mapped to the output substring as the characters "CALL"
followed by any parameter. This parameter is substituted into the
output string whenever it is referenced. The second line tells the
macro processor that the output substring to be associated with the in-
put substring "CALL name" is generated by adding "GOSUB" to the output

119

substring followed by "name". Thus the string "CALL name" is replaced
by the string "GOSUB name". Because CALL does not appear in the output
string, the assembler does not find it, but encounters GOSUB instead.

A common use of macro processors is to implement extended
assembly language functions. A particular computer environment may have
a standard set of instructions which are used to pass data between
subroutines. It is tiresome to code this process repeatedly, and there
is little point in debugging each subroutine calling sequence individual-

ly- In this case, the CALL macro would map into the series of assembly
language statements needed to pass arguments to the subroutine. This
not only saves time and eliminates errors, but makes the program more
readable. It is not necessary to scan all the statements in the
calling sequence to realize that a subroutine is being called, because
the CALL is easily identified.

6.4.4 Interface Checking

It is not possible to check interfaces automatically in most
assembly language programs because the interface logic is obscured when
individual assembly language statements are coded. When macros are
used to implement interfaces, the interfaces are much easier for
programmers and interface analyzers to find. Automatic interface
checking and variable use verification are made possible by this enhanced
program legibility. Because the macros for calling subroutines,
accepting data from subroutines, and other interface functions are
easily located, they can be checked for errors. In principle, the
interface analyzer scans all the programs and checks to see if the
interfaces are compatible. However, it is possible to implement the
interface analyzer in a considerably more elegant manner, as explained
below.

Because the interfaces are specified in the control diagram, it
is possible to define them to the macro processor as a special purpose
macro. Thus, when the macro processor encounters an interface function
macro, it not only generates the code to accomplish the interface
function, but also checks the particular interface invocation against
its list of interface definitions. Thus, interface validation is
performed as each module is assembled. Alternatively, the interfaces
to a given module can be defined before the module is coded. This
allows the structure to be verified before all of the modules in it are
developed. A "pseudo module" containing only interface specifications

120

can participate in the interface analysis, and the code can be filled
in later. This allows some aspects of system integration to be
completed before the modules are developed.

6.4.5 Algebraic Expression Evaluation

The mapping between CALL statements and assembly language state-
ments to implement calling sequences is relatively straightforward. It
is somewhat more complicated, but not excessively so, to examine
algebraic expressions and generate code to implement them. The
techniques for scanning a parenthesized expression are very well known,
and require only a stack to hold temporary results. After development
of the inteiface macros, the next step is to write the 11=11 macro, which
generates code for arithmetic expressions. The "CALL" macro verifies
that the program passing data and the program receiv'ing data agree on
the definition of each datum, and the 11=11 macro makes sure that
variables are used properly.

As with the CALL macro, the 11=11 macro enhances the readability
of the program. The algebraic expression may be understood at a glance,
because understanding does not depend on the analysis of many assembly
language statements. Furthermore, because the macro processor is made
aware of what is actually being done to the variables, it verifies that
the operations are appropriate. Because there are many algebraic
expressions in flight code, this facility is extremely helpful to
flight programmers.

6.4.6 Generation of Control Functions -

Once the burden of algebraic statements has been removed from
the programmer, the major remaining burden is the development of control
functions. Recent experience indicates that such statements as IF,
THEN, ELSE, CASE, and DO are very useful and provide adequate program
clarity. It is possible for a macro processor to generate code for
such sequences.

In explaining this process, it is helpful to re-examine the
evaluation of parenthesized algebraic statements. A statement of the
form

2" (a + b)
requires that the multiplication be delayed until evaluation of the
expression inside the parentheses. The method for evaluating such

121

expressions involves the use of a stack to hold data describing
deferred operations while more immediate ones are performed. In the
example above, when the "(" is encountered, the "2" and the "*'I must be
pushed on the stack. They are removed when the ")" is encountered.

The process of unraveling a nest of IF's, THEN;s, DO's etc. is
essentially similar, provided that the entire source program is regarded
as a continuous string. The macro processing the string defining the
algebraic expression above pushes the "2" and the "*" when it encounters
the " ('I. The "(" signals that the preceding operation must be deferred.
Similarly, the macro processor finding a "DO" statement after a "THEN"
stores the "THEN" for processing after it finds a matching "END". The
reason the "THEN" must be stored is similar to the reason why operations
before a "(" must be stored. When the group of statements bracketed by
"DO" and "END" is to be executed, there is no difficulty in passing
control directly to the first statement of the "DO". When the statements
must be bypassed, however, the code generated in response to the "THEN"
must branch around the "DO" group. The conditional test generated by
the "THEN" statement branches to a statement label located after the
"END" if the test fails. Therefore, the macro processor must remember
to generate an appropriate label when it locates the "END".

The key point i.s that once the program is regarded as a string,
it is possible to treat individual statements within it in the same way
that individual variables are treated within an algebraic expression.
This method of dividing the source code into small pieces closely
resembles the process of breaking a system down into functions. The
analysis of the source program consists of removing the next "thing"
from the input string, and then chopping that "thing" into smaller and
smaller "things" until an irreducible "thing" that can be processed is
found. "DO" is the equivalent of "(" and causes items to be added to
the stack. "END" is the equivalent of ")", and causes removal from
the stack. Looked at in this way, the processing of nested DO's etc.
reduces to the previously solved case of evaluating algebraic expres-
sions. Just as a "(I' defers performance of an arithmetic operation, a
"DO" defers assignment of a control label. Processing control state-
ments requires additional "special characters" and they are handled
in different ways, but this is a difference of degree rather than of
kind.

Thepoint of this argument is that macros can be defined to
generate code required to implement IF, THEN, and DO functions. These

122

macros make it unnecessary for the assembly language programmers to
generate individual assembly language statements to perform these
functions, just as the CALL macro makes it unnecessary to write the code
to pass parameters. This reduces the programming effort needed to
implement a given set of software functions. Once these macros are
implemented, programs written in the augmented assembly language look
surprisingly like programs written in compiler languages.

It must be noted that this does not imply a proposal to implement
a specific cgmpiler language such as PL/l or a PL/l subset. Existing
languages were not designed with EIOS structures in mind, and most allow
the programmer to express such complicated constructs that compilation
is difficult. The HOIL syntax to be developed restricts the use of
keywords such as DO and THEN so that the macro processor can easily
parse the program. Furthermore, the HOIL syntax is designed to
illuminate the interface specifications for the benefit of the automated
analyzers. This simplifies the programs for the reader as well as for
the macro processor, and make it easier to learn to use the HOIL.

6.5 Conclusion

From the point of view of the user, the augmented assembler
language at first sight looks like a compiler language. However, pro-
grammers can always use assembly language code when necessary to perform
functions which are not supported by the macros, although assembly code
is not subject to automatic verification. This provides a great deal
of flexibility in the use of the HOIL. The justification for assembler
use can be made on a case-by-case basis, rather than condemning the
entire software development process to the use of an assembler because
occasional routines require it. Furthermore, if a programmer discovers
a better code sequence than a macro generates, the macro can be changed
to generate the more efficient code, so that all programs benefit, and
macros can be written to perform specialized functions needed by the
multiprocessor software. This further reduces the need for assembly
language.

The macros force interface functions and operations on variables
to be specified in a highly visible manner. This makes the programs
more readable, which cuts implementation and maintenance costs. The
increased visibility also makes it possible to verify interfaces and
the use of data in arithmetic expressions automatically, thus eliminat-
ing the major cost in final system integration. Because it is not

123

possible to,verify pure assembly language statements automatically, the
HOIL flags assembly statements so that the programmer can justify them
to management.

The development of the HOIL and the interface analyzer can
proceed incrementally. If the initial interface functions are found to
be inadequate for a particular application, more macros can be written
to implement additional functions. This neither invalidates previous
macros nor affects the analyzer's processing of previous functions.

Developing systems according to the HOS axioms leads to lower
life cycle costs. System integration costs less because interface
errors are eliminated even before modules are coded. Maintenance is
cheaper because the system is easier to understand and because the
analyzers verify that changes affect only the modules which are changed.
If module interfaces change, the analysis can be repeated to illuminate
the side effects of the change. All of these facilities can be imple-
mented using existing macro processors. Each macro written in develop-
ing the HOIL can be individually tested and debugged. Therefore, the
development cost of the HOIL can be measured in man-months rather than
the usual man-years or man-millenia required for compiler development.

6.6 Application to Software

The fault tolerant flight computer system can be regarded as a
series of environments which support increasingly complex software
systems. The lowest level environment is provided by the system hard-
ware itself. The hardware supports a number of microcoded functions
which provide common facilities and are used by the rest of the soft-
ware. The executive software controls task dispatching, resource
allocation, and reconfiguration in response to faults. The executive
supports the applications software, which is not affected by the fact
that the flight computer is tolerant of hardware errors. Each level
of software supports the adjacent level, and there are many tradeoffs
between levels. For example, the more functions are implemented in
microcode, the fewer instructions are needed to perform a given task,
but the more microcode memory is required for each processor. One of
the major advantages of the HOS approach is that the detailed tradeoff
between the various levels of software can be made after the system is
designed. This is because a given function is specified in the same
way, no matter how it is implemented. Because interfaces between
functions are specified using macros, functions may be moved from

124

software to microcode without affecting the programs which use the
functions. The macros must be changed to generate different code, but
the source program itself does not change. In order to illustrate the
common specification of functions, the following example defines the
HOS specification for the task scheduling portion of the multiprocessor
executive and part of the reconfiguration routines. It is important to
note that the functions are descr'ibed in the same way, no matter how
they are implemented.

6.6.1 Software Example

The scheduling functions in the executive are collectively known
as SYSPROM. The main purpose of SYSPROM is to ensure that a scheduled
task is performed at the correct time or in response to the appropriate
event. The overall scheduling function can be described as

Task Done = f (Task Scheduled)
Because a task is done only after it has completed its function,

Task Done = g (Active Task)

but it does not become active until it is ready, so

Active Task = h (Ready Task)

Likewise, a task must be scheduled before it can become ready, so

Task Ready = j (Task Scheduled).

These specifications are illustrated in Figure 6.1. Note that it
is not necessary to define any of the functions f-j. The specification
and the control structure are implementation independent.

Interfaces should be checked at this point. Input can be traced
down the tree, and output can be traced up. Intermediate outputs and
inputs can be traced on the same level. Because the axioms have not
been violated, Figure 6.1 represents a valid HOS control structure.

Function j involves some kind of delay mechanism between the
scheduling of a task and the time at which the taskis to be performed.
Thus, j decomposes to

Task Ready = k (Task Waiting) Task Waiting = 1 (Task Scheduled)

This breakdown of j is shown in Figure 6.2. An alternate decom-
position of 1 is shown in Figure 6;3, which is entirely equivalent to
Figure 6.2. It is also possible to express all control structures as
binary trees as in Figure 6.4. In general, the binary structure is much

125

TASK DONE = f(TASK SCHEDULED)

j(TASK SCHEDULED)

ACTIVE TASK = h(TASK READY)

Fig. 6.1 First Level of Decomposition.

TASK READY = j(TASK SCHEDULED)

TASK READY = k(TASK WAITING) TASK WAITING = I (TASK SCHEDULED)

Fig. 6.2 Second Level.

TASK DONE = f(TASK SCHEDULED)

TASK DONE = . ..Tg

ACTIVE TASK = h(TA-SK READY) TASK WAITING = k(TAsK SCHEDULED)

Fig. 6.3 Alternate Structure.

126

TASK DONE = f(TASK SCHEDULED)

TASK DONE = a(TASK READY) TASK READ+-= b(TASK SCHEDULED)

/\
TASK DONE = g(ACTIVE TASK)

ACTIVE TASK = h(TASK READY) TASK WAITING = I (TASK SCHEDULED)

Fig. 6.4 Binary Tree Structure.

TASK READY = k(TASK WAITING)

TASK READY=&

TASK WAITING = I (TASK SCHEDULED)

Fb ’ TASK WAITING = pITASK SCHEDULED

TASK READY = n(TASK WAITING
FOR TIME)

TASK WAITING = q(TASK SCHEDULED
FOR TIME)

Fig. 6.5 Further Refinement.

127

clearer and lends itself to greater simplicity of design. The extra
leyels Qf refinement do not requireadditionalwork during implementation
because implementation is performed only at the lowest levels of the
tree.

Up to this point, the scheduler diagrammed in Figure 6.4
schedules tasks only as a function of time. The specification is aug-
mented as shown in Figure 6.5 to accommodate event scheduling as well.
Examination of the total structure defined by Figures 6.4 and 6.5 shows
that the input and output of the specified functions are consistent with
the HOS axioms, and that the control structure is also consistent.

The decomposition process is carried to more and more levels
until the design reaches a point where the lowest level functions can
be implemented easily. The cutoff point for decomposition may be
determined by trial and error during implementation. If the implement-
ation of a function proves to be excessively complex, another level of
decomposition is called for. On the other hand, if implementation of a
function is so simple that the interface statements occupy a major
portion of the program, it is wise to implement directly at a higher
level.

It is important to note that identical considerations apply
whether the system is implemented in hardware or in software or in
some combinationofthe two. The lowest level functions may be imple-
mented as software subroutines or hardware modules without affecting
other modules. This allows many implementation decisions to be deferred
until the design is complete, and ensures that options are kept open as
long as possible.

HOS Axiom Table

This table states the HOS axioms in an informal manner. Deriva-
tions of theorems based on the axioms are contained in [Sl. These
theorems motivate the rules for function relationships which are incor-
porated in the interface analyzer and specification analyzer.

128

Axioms, Formal Defintion

1. A function controls the invocation of the set of valid
functions on its immediate, and only its immediate,
lower level.

2. A function is responsible for its own and only its
own output.

3. A function controls the access rights to each set of
variables in the output space for each immediate, and
only immediate, lower level function.

4. A function controls the access rights to each set of
variables in the input space for each immediate, and
only immediate, lower level function. Thus, a function
cannot alter members of its own input set.

5. A function controls the rejection of invalid elements
of its own, and only its own, input set.

6. A function controls the ordering of each tree for the
immediate, and only the immediate, lower level.

129

CHAPTER 7

SEMICONDUCTOR TECHNOLOGY

The multiprocessor architecture has reached the degree of maturity
where it becomes appropriate to begin generating specifications and
design candidates for evaluation and production. The reduction of
system failure rates through redundancy alone has a limited degree of
feasibility. In order to reach the level of 10 -10 failures per flight
hour it is necessary to address the many issues for which redundancy is
only a partial solution or no solution at all. The preceding chapter
dealt with one of these issues, i.e. software, for which redundancy
contributes a high probability of correct execution, but can not other-
wise contribute to correctness, In this chapter and the next, we
consider two primary issues underlying failure rate reduction. The
chapter following this one examines packaging constraints and some
candidate approaches. Key issues are isolation, logistics, repair,
integrity, interconnection reliability, and heat transfer. Heat
transfer is possibly the most crucial of these issues, because the
thermal density will inevitably be high, and the failure rate of semi-
conductor components is critically sensitive to the ambient temperature.

This chapter is concerned with several issues related to semi-
conductor technology; the tradeoffs in design, the component reliability
goals, and the acquisition of reliable components.

7.1 Candidate Components

To a large extent, the multiprocessor presupposes several charact-
eristics of its semiconductor components. They must among other things
be reliable, producible, available, economical, and efficient in terms
of power and volume. The inherent incompatibility of many of these
characteristics makes it exceedingly difficult to select among the
available technologies and devices, none of which are ideal in all
respects.

130

From a historic viewpoint, the use of massive redundancy in inte-
grated systems has only been considered where the cost of hardware repli-
cation has been small in comparison to project cost. The emergence of
the LSI microprocessor has done much to foster consideration of a massive
redundant architecture for commercial aircraft. It is natural, there-
fore, to begin with the assumption that the LSI microprocessor is a
necessary element of the multiprocessor; This assumption can be
ch,allenged on grounds of speed, testability, and failure rate. The LSI
processor devices are near today's limits of complexity, and as a
result can &ffer from anomalous effects such as pattern sensitivities,
which stem from their small and irregular geometries. They moreover are
difficult to test, because relatively few of their internal signals are
accessible. The faster bipolar microprocessors, to some extent,
alleviate the problem, because they are partitioned onto a number of
chips. Their failure rate remains an open question, however, until such
time as their production volume becomes large enough to establish an
assessment. The alternative approach is to use more chips in a more
nearly conventional arrangement. This approach is limited by consider-
ations of size, power, and cost.

Memory accounts for a large fraction of the multiprocessor's
circuitry. LSI memory elements are generally adequate in terms of
speed, are moderately testable, and in some cases have proven to have
low failure rates. They are therefore viable candidates for all of the
memory functions: common memory, cache memory, and microprogram stores.
The volatility of semiconductor read-write memory leaves some doubt as
to their utility in common memory. Core memory is a potential competi-
tor, but does not appear to be improving as fast as semiconductor
memories in cost, density, and power consumption. Moreover, if core
memory were used for instruction storage, the initialization of the
computer after certain maintenance procedures would require external
reloading. A wholly semiconductor common memory could use programmable
read-only memory elements for instruction storage and read-write elements
for data. When a permanent memory module fails, it could be backed up
by a read-write memory spare, although it is conceivable that dedicated
spare PROM memory modules might be included for critical permanent
modules.

Certain of the multiprocessor's circuits are repeated often
enough that they might appropriately be produced as custom integrated
circuits. The bus guardians, the bus interfaces, and the clock

131

receivers are good examples. An equally attractive approach is the use
of hybrid sub-carriers. Both of these approaches are expensive
initially with the potential of reducing the long-term total costs.
Whether or not such implementations are made, the use of discrete
transistors and diodes, and SSI and MS1 circuitry for certain functions
is inevitable. The only question is how much. Again, power, volume,
and standardization place limitations on the acceptability of SSI and
MSI.

In summary, then, it is anticipated that a variety of semicon-
ductor components will be required, ranging from transistors to LSI
elements. The tradeoffs that lead to selection will depend on time
frame of procurement, procurement volume, computer performance
parameters, and computer functional application.

7.2 Reliability Goals

In order to estimate the reliability requirements of the semi-

conductor elements, we begin from the premise that the computer failure
rate will be of the order of 10 -10 failures per hour. As a first esti-
mate, we can refer to the Markov reliability model results described in
Chapter 5. Table 5.3 lists baseline parameter values used for a
representative calculation of failure rate, in which the basic module
MTBF was taken to be lo4 hours. For a complement of 15 processor and 9
memory modules, the computer failure rate was slightly over 10 -10

per
hour. A rough extrapolation to a somewhat larger computer (20 proces-
sors, 20 memories) and a slightly lower computer failure rate leads to
a nominal module MTBF of 3 x lo4 hours. The next step in the estimation
process is to assume a certain number of semiconductor devices per
module. In the absence of a firm design, we make the rather crude
estimate that each module will require roughly two hundred semiconductor
devices. If we attribute all failures to these devices, each device
would require a failure rate of 0.017 per cent per thousand hours
(1.7 x 10m7 per hour). In order to take into account the packaging and
interconnection failure rate, we reduce the allocation to the semicon-
ductor devices to 0.01 percent per thousand hours. This is a convenient
number to deal with at this stage of the design, because it represents
the low end of the range in which commercial production components
usually are available after screening.

In order to achieve the 0.01 percent per thousand hour failure
rate over all components, special precautions will be necessary,

132

involving the selection and the acquisition of components. The
requirement is clearly one that can be met. Military programs such as
Poseidon and Trident have done so. Indeed, Minuteman required a rate
one tenth as large, and Apollo achieved one twentieth. Moreover, the
technology and management required to do it is widely known. On the
other hand, commercial avionics equipment has a history of performing
an order of magnitude or more worse than what we desire. How this
situation comes about, and how it can be resolved is not totally clear,
but some insight may be gained by a brief consideration of some of the
relevant issues.

7.3 Component Selection

One of the keys to component reliability is the process of
choosing the components to be used. If complete freedom of choice were
available, it would be possible to obtain excellent components with a
minimum of effort. In practice, however, strong pressures exist to
choose components that are not readily procurable with low failure rates.
LSI is an example of this, where the high component density available
has advantages in all respects except, perhaps, reliability. Given
that component selection will necessarily involve the choice of devices
that are relatively new, or not produced in large quantity, or for some
other reason are not easily qualified a few guidelines are applicable
in making such choices.

Table 7.1 indicates many of the failuremodes that have been
observed in integrated circuits. The fact that some components are
available with very low failure rates testifies to the ability in some
cases to avoid or surmount these problems. One obvious guideline for
component selection is to choose components related to those that have
been successful, in terms of process, vendor, and/or procedures for
screening and burn-in.

Figure 7.1 shows a family tree of technologies, incomplete for
lack of some of the newer developments. The figure helps to visualize
the vast number of different processes used by various suppliers today.
Each process has its own individual failure modes, each of which may
require a different screening environment. The consequence of choosing
components from among several of these technologies will be an
escalation of the cost of procurement and reliability assurance.

The choice of LSI components is particularly difficult, because
many problems are exaggerated by the small pattern geometries. Small

133

TABLE 7.1

1.
2.

3.

4.

5.

6.

7.

8.

9.
10.
11.
12.
13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

IC INTERNAL PROBLEMS DETECTED PRIOR TO PRODUCTION BUYS

Poor metal adhesion to Si02
Underbonding
Overbonding
Al rich, Au Al eutectic formation ("purple plague")
Nicks and cuts in bonding wires
"'Necking" at foot of ultrasonic or wedge bonds
Critical angle of wire pull (ultrasonic bonds)
Overly long bonding leads
Leads shorting to edge of chip or package lid
Burn out at scratches caused only by electrical testing
Shorts by metal smearing
Surface instabilities
PNPN switching
Chip cracking - pyroceram mount, eutetic mount
Poor chip orientation
Oversized bonds
Pinholes in Si02
Poor Si02 Dielectric strength
Misplaced bonds
Contamination in packages
Al corrosion
Thinning of Al at Si02 steps
Al to Si contact resistance
Lifted chip
Scratches
Secondary breakdown
Interconnect layout - geometry
"Purple plague" at Si02 steps - multimetal systems
Non interchangeability of "identical" circuits
"Disappearing" of aluminum - alloying, metal migration
Steeper Si02 steps due to photo resist change

134

MINORITY CARRIER MAJORITY CARRIER
DIFFUSION FIELD DRIFT

B R MOS (MONOPOLAR)

---r

I
I

1
PNP NPN

N MOS -

C MOS

I

1

41

I

12L Au
DOPED GATE

DIEL,

I

GATE
DIEL,

GATE
DIEL,

"$
JON sbs

IMPLANTA-
TION

t

DIFFUSED D ELECTRIC
t

HYBRID
JUNCTION GLASS)
ISOLATION ISOLATION

Fig. 7.1. Technology Family Tree.

metallizations for interconnection and small spaces between intercon-
nects enhance material migration through high current density and
electric fields. Small windows in the thermally-grown oxide make
etching more prone to defects, which can instill long-term failure modes.
Surface instability is another problem related to the oxide in small
geometry circuits. LSI also suffers, as mentioned previously, from test-
ing problems. As a guideline for LSI device selection, one must try
to avoid devices that have not matured to the point of large-scale
production with relatively good yields. It is worth pointing out that
where an LSI device replaces ten other devices, one can in principle
tolerate ten times the failure rate. This is only true, however, for
random failures. Many of the failure modes are generic, i.e. strongly
correlated, which acts to negate the advantages of redundancy. This
effectively means that unless LSI devices exhibit failure rates well
below their functional share of the circuitry, they are apt to contrib-
ute more than their share toward system failure.

It is always beneficial to minimize the number of different
components used. Wherever a single component can serve a multiplicity
of functions, the degree of standardization is enhanced, and the pro-
curement volume of the part is increased, multiplied by the number of
computers times the number of like modules in each computer. This
could mean tens of thousands for each instance.

As a final guideline for component selection, we mention once
again the issue of temperature. Figure 7.2 illustrates the dependence
of component life on component temperature. For different technologies
and circuits, the curves are shifted, but the slope remains fairly
constant. A difference of a few tens of degrees in temperature produces
an order of magnitude difference in failure rate. Aside from motivating
a conservative thermal design, these curves also provide strong
motivation for minimizing power dissipation of components. This factor
tends to favor the newer technologies over the better-established ones,
contrary to other guidelines. The resulting dilemma is resolved in
this case by making strong concessions in the thermal design of the
packages rather than relying on low-dissipation components.

7.4 Reliability Assurance

Component reliability requires a dynamic life cycle rather than
just a single initial specification. Inadvertent changes in production
processes can introduce new failure modes, detectable only by incoming

136

G 400
2 350

5: 300

s 250

5 200
W
2

5 150
0
0

z 100

2
a
5
g 50
W
F

25

0 = INCREASING TIME, CONSTANT STRESS

IO” 1 IO I02 I03 IO’ 105 IO6

LIFE IN HOURS

LIFE DISTRIBUTION OF EARLY SILICON
MESA TRANSISTORS

FiF. 7.2. THE ANALYSIS OF DATA FROM ACCELERATED STRESS TESTS

by
D. S. Peck

Bell Telephone Laboratories
Allentown, Pennsylvania

insepction and test, or by the analysis of field failures. Timely
detection and correcting action is crucial in order to minimize the
situation of having many devices with generic flaws in the field. The
magnitude of the detection problem can be seen by considering the length
of time required to obtain 90 per cent confidence of the 0.01 percent
per thousand hour failure rate in a sample of a thousand devices. There
must be no failures in 2.7 years, there may be one in 4.5 years, and
four in 9.3 years. The paucity of allowable failures requires stringent
examination of each failed device to determine the failure mode and
its potential for screening.

The methodologies of reliability assurance are numerous. No one
procedure is ever adequate, owing to the elusive and nearly invisible
nature of the problem. Table 7.2 is a listing of several methods that
have been used by various programs, often at substantial expense, and
with varying degrees of success. Commercial fabrication facilities
have been able to adapt some aspects of these methods to enhance relia-
bility while keeping costs low. In some cases it is less expensive
overall to use such procedures than not to do so. Certainly, a relia-
bility assurance program can have a cost that is unreasonably high.
It has also been shown, however, that programs of moderate cost have
produced excellent results. Intermsof life cycle costs, where main-
tenance, logistics, and down time are taken into account, a reliability
assurance program of reasonable size can easily be justified. The
problem is, how to make it effective.

Success in reliability assurance correlates well with motivation
and determination. This follows from the fact that so many potential
problems exist, any one of which can result in high failure rates.
Every link in the chain must constantly be kept strong. The relation-
ship between airlines and the computer manufacturer can have a favorable
impact on the success of the program. A commercial airline application
is an environment wherein the computer manufacturer can be involved in
the complete life cycle of the equipment. Equipment lifetime
warranties are not new to this industry. In some cases, manufacturers
guarantee to provide a given number of operational pieces of equipment
to an airline for a fixed fee, and handle the repairs and logistics.
An extension of this policy into areas of liability, reliability, and
cost of ownership would probably be required to obtain the system goal
of one failure in 10 10 hours.

138

1.

2.

3;

4.

5.

6.

7.

8.

9.

10.

TABLE 7.2

METHODS OF RELIABILITY ASSURANCE

AC and DC testing (vendor specs).

-Acceptable Quality Level (AQL)
Sampling procedures and tables MIL Std 105D.

Use of MIL standard parts.
Test method for semiconductors MIL Std 750A.
TeSt method and procedures for microelectronics
MIL Std 883.

Qualified suppliers list.

Qualification testing
a. Small sample step stressing
b. Life testing
C. Screen and burn-in

Predicted life from accelerated stress (Bell Laboratories).

Lot rejection.

Captive line.

In-house resident.

Fixed processes.

139

7.5 Recommendation

The failure rate goal of 0.01 per cent per thousand hours for a
commercial application can be reached, and has been surpassed in
several military and space programs. Nevertheless, the requirement is
stringent, and will require out-of-the-ordinary processing, The
production cost will be higher than usual, but the increased cost will
be counterbalanced by reducedmaintenanceand down-time costs.

Production startup costs will be high, as solid state component
vendors are reluctant to change any of their methods of operation, They
do adapt in some cases, and with large production purchases by a
customer who understands solid state processing technology and failure
modes, they can anticipate returns in the form of increased production
yields, The initial costs of special handling, extra documentation,
test equipment, burn-in facilities, failure analysis, and engineering
evaluation will be considerable. This is one of the areas where
component standardization is highly advantageous, as it distributes
these costs over many production units.

In the absence of a more specific design, it is not possible to
make a detailed recommendation for a reliability assurance program.
Some requirements are functions of technology and the environments of
manufacturing and purchasing, and must be dealt with at a later time.
It is possible, however, to make some specific observations. We have
stated before that the desired component failure rate can only be
achieved by a dynamic approach in which problems are continuously
detected and solved, The reliability assurance program should begin
two years before production begins, and should continue for the
computer's production life cycle. The following paragraphs roughly
outline the elements of such a program.

First, a program of engineering evaluation and qualification
testing will be required. Failure modes must be determined, as well as
the failure rate for each modes. Environmental tests to trigger each
mode must be established, and the level of screenability determined.

From the engineering data generated, screen and burn-in pro-l
cedures must be designed to monitor and identify component problems.
The static and dynamic tests, the cost trade-off between component
screen and burn-in vs. module burn-in, and component procurement
specifications can then be generated.

140

Module burn-in for the fault-tolerant computer can be readily
performed because of the many fault detection techniques built into the
system. The burn-in rack would simply be a large computer motherboard.
The biggest cost of module burn-in would be in the cost of the modules
themselves. Early failures not picked up at component screen and burn-
in could be detected at module burn-in. The degree to which one depends
on an extensive burn-in depends on the failure rate of the procured
components and the cost trade off.

Failure analysis on field failures and module.burn-in failures
are required. After the production process is established, this data
can be used for corrective action by the vendor and an indication of
failure rate trends. This is a long time-constant detection method, but
it is capable of indicating minute changes in failure rate. A type of
Qualified Suppliers List is required. This, coupled with the component
specification requirement, will help to generate the procurement plan.
Data from Failure Analysis will update the Suppliers List.

Lot jeopardy or lot rejection, such as employed on the Apollo
program, is not required. Some type of in-line quality detection method
is necessary, however, to prevent many modules from being built with a
bad lot of parts. Screen and burn-in plus module burn-in can detect
these problems, but detection at the module burn-in level is costly
because of rework or scrapping of modules.

141

CHAPTER 8

PACKAGING CONSIDERATIONS

This chapter covers the packaging of the fault-tolerant computer
from a general packaging philosophy through to brassboard and production
packaging schemes. The section on packaging philosophy promotes the
idea of physical integration, where an attempt is madetomake packaging
elements serve 2 or 3 of the basic packaging functions, interconnection,
thermal control, and physical integrity, This is followed by a state-
ment of the fault-tolerant computer packaging problem in the form of the
computer architecture to be packaged and the operational and environ-
mental constraints which must be considered. A general discussion of
some packaging technologies is then followed by specific concepts for
the brassboard and production computer packaging.

The brassboard packaging is done using mature technologies. In
fact, there is no reason the ultimate reliability goal for the computer
cannot be achieved using the design proposed for the brassboard. The
production model packaging scheme proposed for a build in the 1980-85
time frame could easily be built now, but with some lack of confidence
in reliability. By 1980-85 the technologies used in this design will
have achieved a maturity which will improve our confidence in their
reliability. Also, we might expect by then a small saving in cost, as
well as the large saving in volume and weight this design will provide.

8.1 Packaging Philosophy

The term packaging can be applied to a wide range of activities.
It can be used for putting resistors in a carton for shipping, for
designing a TO-5 can and putting a transistor chip in it for physical
protection, or for the physical design and assembly of a complete
electronic system.

In order to focus on the emphasis required for the physical design
of systems incorporating components such.as LSI and hybrid circuits the
term "physical integration" will be used. The term alludes not only to
integration in a material sense, but also to integration based on

142

lr

physical laws applied to the system as a whole. For example, the
designer of a system connector must consider not only such things as
connector size, resistance, and reliability, but also whether it will
contribute to system heat transfer and structural integrity.

The human nervous system is a good example of a physically well
integrated system. Of course economics and repairability place limits
on building such a system even if we had the technology. Physical
integration will require that system designers apply their knowledge of
logic, device physics, materials, heat transfer, high-speed data
transmissidn, electromagnetic interference, reliability, repairability,
and testing concepts. All these factors must be considered and com-
promises must be made to achieve future system goals.

The complexity of these tradeoffs is more evident when we realize
that a study of heat transfer alone must consider thermal properties of
materials, thermal interfaces at mechanical and electrical joints, the
distribution of thermal sources and sinks, device dissipation, device
temperature rise versus reliability, and cooling methods available.

We may gain some insight into what can be done to physically
integrate a system by examining LSI itself to see what makes it so
attractive. The immediate and somewhat superficial answer is because
many packages are replaced by one package, many interconnections are
eliminated, and many of those connections that remain are on the chip
itself, which reduces cost and increases reliability. Perhaps more
basic to the success of LSI, and indeed the reason for its name, is the
fact that all parts of the LSI chip serve multiple basic functions.
The components and interconnections in a LSI structure compose only a
small part of the volume of a chip. However, the remaining part of the
chip contributes to its overall strength and thermal dissipation, the
prime functions of the larger part of the otherwise unused silicon. We
might conclude that the design of parts of a system to serve two or more
basic functions is a desirable guide in working toward a "physically
integrated" system.

Physical design, in the most basic terms, consists of designing
for the electrical interconnection of components, extraction of heat,
and mechanical integrity in a specified environment. One must bear in
mind at all times the tradeoffs between these areas while evolving a
design. System logic designers must consult with the people responsi-
ble for the physical design in the conceptual phase to achieve the goals
of physical integration. A good system design can only be achieved if

143

good compromises are made in the areas of system electrical design, and
system physical design.

Interconnections are best when eliminated. If this is not pos-
sible, permanent interconnections are preferred to demountable ones.
Unfortunately, the need for repair, modification, economy, and electrical
test preclude this ideal situation. As a compromise situation we must
resort to partitioning a piece of equipment or system into manageable
portions which may be interconnected by demountable connections. Good
partitioning requires the cooperation of the electrical, LSI, and physical
designer. For example, increasing the number of gates in a LSI chip may
reduce the lead/gate ratio. However, the number of lead connections
which can be put on a chip is a function of area. Of course there are,
and always will be, technology limits on how big a chip can be made and
packaged. These variables leave considerable room for tradeoffs. As
another example of an area for designer compromise, it might be desirable
to use serial instead of parallel transmission to reduce interconnections.
Such a change may or may not be compatible with system speed requirements.

When analyzing a system from a physical integration .point of view
it is helpful to consider the levels of interconnection in the system
and the method of connection. A complex system may have 4 (or possibly
more) levels as listed below:

Level 1 - can be represented by interconnections in a hybrid
circuit. Interconnections are usually non-repairable. A
failure in a component would require replacement of this level
as the unit is not repairable.

Level 2 - can be represented by a multilayer wiring board, or
cordwood welded matrix interconnections. Connections are
semipermanent. Repairs can be made at the fabrication
facility.

Level 3 - can be represented by pin connectors with a wire-
wrap field interconnection. Connectors are demountable and
therefore a replacement module can easily be installed.

Level 4 - can be represented by a cable and connectors inter-
connecting subsystems. These connections are demountable
and therefore subsystems can be replaced easily.

These defined levels of interconnection aid in dividing the
physical integration problem into portions of manageable size at the
hazard of neglecting the effect that a decision made in one area will

144

r

have in the other areas. Keeping this hazard in mind, the physical
designer must consider for each level the itemslistedbelow:

1. Heat transfer within each level and to the next-level.

2. Type of connection or connector.

3. Type of interwiring.

4. Partitioning for a minimum number of connections, ease
of testing, and ease and cost of repair.

5. Ability to stand environmental stresses.

6. Reliability.

7. Volume.

8. Weight.

9. cost.

The environmental conditions under which a system may be required
to operate vary over a wide range. Ground-based computers may be in
environmentally controlled rooms isolated from all but the mildest
vibrations. Spaceborne computers may be required to operate reliably
under severe shock, vibration, and temperature excursion conditions in
a vacuum as well as under atmospheric conditions. Care is required in
the selection of materials for matched thermal expansion and, if this is
not possible, methods of stress relief must be built in. Substantial
amounts of material may have to be added for structural rigidity.
Everything must be held firmly in place with screws, cement, potting,
etc. A physical designer should repeatedly ask himself whether the
material added for mechanical integrity can also be made to act effec-
tively to help solve the heat transfer problem and/or double as part of
a connector structure.

The heat packing densities possible with LSI imply a significant
increase in heat dissipation per unit volume despite the fact that the
power per function is reduced. The cooling technique for a particular
system must take into account coolants already available. For example,
cooling air might easily be bled from a jet-engine compressor. One
should design for a minimum weight of the electronics and cooling
system taken as a whole, particularly for spaceborne and airborne
systems. The ability of the cooling system to remove large amounts of
heat from small volumes is important to prevent hot spots. For high
power density equipment, cooling by liquid flow or cooling by boiling
might be considered. Thermoelectric cooling and heat pipes should be

145

considered for hot-spot control. It is of course advantageous if
material added for thermal control doubles either as a structural member
or as part of a connector.

8.1.1 Assumed Computer Architecture for Packaging

The object of this section is to set forth in condensed form the
architectural features which are of importance in developing a packaging
concept for the computer.

We have assumed that 28 VDC power is available from 5 separate
sources. For example for an LlOll these could be the alternators on 3
engines, the auxiliary power unit, and the battery bank. Because the
computer may never be without power during flight, it may be necessary
to add a dedicated battery system to be used during short time power
outages. This is already being done for navigation systems such as the
carousel. The need for such a dedicated battery can only be assessed
for a particular application and we have assumed for simplicity that it
is not needed. The separate power sources are brought to each module
where the necessary isolation, conditioning, and overvoltage protection
is provided. The total power budget of 28 VDC is 1400 watts. This
conservative number reflects the possibility that LSI utilization may
be limited by considera.tions of producibility and testability.

The computer is made up of processor modules, memory modules,
clock and I/O access modules, and a suitable bus structure to inter-
connect the modules. Table 8.1 lists the modules and buses required.
More detail about the number of bus conductors is given in Table 8.2.
Here we have assumed that each connector will provide a pair of pins to
make contact to each bus. Figures 2.2. and 2.3 in Chapter 2 schemat-
ically show how the various modules and buses are connected in the
computer. The bus guardian units and isolation gates,depicted
separately, will actually be in the modules they are associated with.

The architecture implies that one failure must not be permitted
to cause another failure. For example a short circuit in one module
must not spatter metal on the active section of another module. In
addition the system cannot tolerate a serious rash of generic failures
in either the electronic components or packaging components. Generic
failures are caused by a built in wearout mechanism in a given part
type which causes all these parts to tend to fail after a given amount
of usage rather than randomly.

146

TABLE 8.1

BASELINE COMPUTER ARCHITECTURE

MODULES

20 Processors Each module contains 2 bus guardian units,
20 Memories bus isolation gates, and its own power
6 Clock & I/O Access supply.

MODULE INTERWIRING

5 I/O Buses
5 Memory Buses
5 Power Buses
6 Clock Buses
6 I/O Net Buses

TABLE 8.2

LIST OF MOTHERBOARD WIRING

CLASSIFICATION

?OWER (28 VDC)
JLOCK
I/O BUS
WMORY BUS
I/O NET

TOTAL

NO. OF CONDUCTORS

10
12 + GND PLANE
15 + GND PLANE
15 + GND PLANE
12 PAIRS

NO OF PIN PAIRS

10
13
16
16
24

79

147

8.1.2 Environmental Constraints

The most serious environmental constraint is thermal. ARINC
Report Number 414 suggests a storage range of -65OC to +71°C and a
normal operational range of -40°C to +55OC. This is quite a large
temperature range for high reliability electronics.

We have assumed that cooling will be done through the medium of
ambient air and that the air contains too many contaminants to be
passed directly over the electronics. The availability of a vacuum
plenum for pulling cabin air across the heat exchange surfaces in the
equipment will not preclude the necessity for fans in the equipment in
the event the vacuum system fails. The computer will require consider-
ably more than the recommended 6.8 - 13.6 Kgms of cooling air per hour
per 100 watts dissipated. The 26'C air temperature rise with a 13.6
Kgms./hour flow is much too high.

Atmospheric pressure ranges from 305 meters below sea level to
13700metersabove sea level must be withstood by the computer. It must
also withstand a decompression from 13,700 to 2,130 meters.

The computer must withstand vibration, landing, shocks, and
handling shocks. Adequate shielding to protect against EMI, and in
particular EM1 generated by lightning strikes, must be provided. Much
of the detailed information on environmental constraints can be found
in ARINC Report No. 414.

8.1.3 Operational Constraints

We have assumed that ATR packaging, although desirable, will
only be used if it can be shown that such packaging does not measurably
influence the computer's reliability. It is particularly important
that the fault-tolerant computer reliability not be compromised by
efforts to reduce or by efforts to design it into an unfavorable form
factor. This concept is not new in aircraft practice, as we see from
ARINC 414 where it says, "The airlines place great emphasis upon
reliability and maintainability with only secondary interest in size
and weight." A severe failure budget, such as 1 failure in 10 10

operational hours for the computer, allows little room for compromise.

Maintainance should normally be done on the regular maintainance
cycle. Since the computer can pinpoint its own failures to the level
of a processor memory, clock, I/O access unit, or bus, it seems reason-
able that the modularity of the computer conforms to these functional
blocks as much as is practical. Maintainance would then consist of

148

pulling the failed module and replacing it. The length of operation
between scheduled maintenance stops is one of the determinants in fixing
the number of spare modules which must be built into the computer.

8.1.4 Aircraft Specifications

Various ARINC specifications and reports were drawn upon in study-
ing the airborne fault-tolerant computer packaging problem. It is
anticipated that the guidance of these and similar documents would be
followed except where a well defined advantage will result from
taking another direction. The documents which significantly contributed
to this report include:

"Air..Transport Equipment Cases and Racking", ARINC SPEC 404.

"Guidance for Designers of Airborne Electronic Equipment,"
ARINC Report 403.

"General Guidance for Equipment and Installation
Designers," ARINC Report 414.

"Guidance for Designers of Aircraft Electronics
Installations," ARINC Report 306.

"Guidance for Aircraft Electrical Power Utilization
and Transient Protection," ARINC Report 413.

8.1.5 Packaging Technologies

It is not possible in a few pages to even list, much less fully
discuss various packaging technologies which may be applicable to
fault-tolerant computer packaging. However, it is felt that a limited
discussion which covers technologies we have selected for use in both
the brassboard and production designs as well as some we considered
and rejected, will give some insight into the selection process.

Starting at the lowest level of interconnection in the system
it is logical to first consider component packages. Integrated
circuits are generally available in two package styles, flat packs and
dual-in-line (DIP) packages. Flat packs are substantially smaller than
DIPS and more easily removed for repairs. However, they are more
expensive, less available, and not adaptable to wave soldering. Both
package types can be of either hermetic or non-hermetic construction.
Although recent tests have demonstrated the high reliability of some
non-hermetic packages when used with the right semiconductor

149

metalization and passivation systems, the hermetic package will still
offer a reliability edge for many more years. Hybrid circuits can also
be made in DIP or flatpack form. Because one hybrid circuit contains a
considerable amount of electronics a high number of I/O leads are neces-
sary. The flatpack is more often used because of closer lead spacing

Q.27 vs 2.54mm) and the greater ease of putting leads on 4 sides of a
flatpack. Many passive components, lower power resistors, small
capacitors, and small inductors, can also be put into the DIP and flat-
pack package styles. For the brassboard computer the DIP package has
been selected. For the production model which would be built in the
1980-85 time frame we believe hybrid circuit technology can be gain-
fully used. The flatpack will be used for packaging these hybrids.

Hybrid circuit technology provides a means of interconnecting
many components in a small space and then protecting them in a common
package. Many advantages can accrue. There are fewer connections in
the system, and the system is smaller. Smaller size implies lower
weight, higher speed, and lower power. The materials and processes
used in hybrids are far from standardized today. Of particular
importance are differences in semiconductor bonding. Connections can
be made using gold or aluminum wires and thermocompression or ultra-
sonic bonding. IBM has standardized on a flip chip solder collapse
bonding technique where the chips are specially made with solder bumps
at the bonding pads and the chips are protected by a glass coating.
Bell Telephone uses a gold beam leaded semiconductor chip which is
protected with silicon nitride. The chip is bonded by a thermocompres-
sion process. Neither the IBM or BTL processes have been widely used
outside these companies and procuringaline of chips which have been
reliably processed in either format is not presently possible. Many
other semiconductor attachment processes have been tried over the past
fifteen years and all but one have remained inrelativeobscurity. That
one is the so called film bonding or tape automated bonding. In this
process the chip is prepared with bumps on the pad areas. A reel of
plastic film with sprocket holes in it carries sets of copper fingers
cantilevered over cavities in the film. A set of fingers is gang
bonded to the bumped chip. The next step is to cut the chip with
fingers free from the film and gang bond it into a package or hybrid
circuit. The keys to the success of the process are the ease of
handling and operating on chips in the reel format and the gang bonding.
This process is being used by several vendors for DIP packaging and is
beginning to find its way into hybrid circuit manufacture.

150

The base of the hybrid circuit consists of a substrate which
supports a w'iring pattern. To this wiring pattern active and passive
components can be individually attached. Also it is possible to
deposit, via batch processors, resistor, capacitor, and inductor
elements. The processes for depositing materials, pattern formation,
and component adjust are legion. A few of the most important aspects
are touched on here.

Wiring patterns can be made in multilayer format by two primary
methods. One starts with a tape on theorderof .25mm thick made from
ground cera*mic and plastic. Holes are punched in the tape at appropriate
places and are filled with a metal powder in an organic binder. A
pattern is also silk screened on the tape using the same metal - organic
mixtures. These tapes are then accurately stacked, pressed together
and then fired until the ceramic and metal sinters into a solid block.
The result is a multilayer wiring structure in a block of ceramic.
A second method starts with a fixed ceramic substrate. Alternate layers
of metal wiring patterns and dielectric are screened and fixed to again
form a multilayer wiring structure.

Resistors can be made by silk screening special glass and metal,
or glass and semiconductor formulations at appropriate gaps in the
wiring pattern and firing. Capacitors and inductors can be made using
the fired conductor material in conjunction with screenable and fireable
high dielectric constant and high magnetic permeability materials
respectively. Silk screening is a thick film process.

Thin film processes such as vacuum evaporation and sputtering
can be used to deposit conductor,resistor, and insulator materials on
ceramic substrates. Photolithographic processes can be used to form
these materials into patterns to make circuits.

The addition of semiconductor components and discrete passive
components to structures made in the aforementioned ways completes the
hybrid circuit.

Any product which is made in so many different ways must have
some decisively good features. Our problem is to select materials and
processes which best lend themselves to control, and to find vendors
who are capable and willing to exert the degree of control necessary
for the fault-tolerant computer application.

151

Individual components and hybrid and LSI circuits must be inter-
connected in the system to form modules. Multilayer ceramic wiring
boards made as previously outlined can fulfill this function if the
board area required is not too large, say under 160 cm2.
Printed circuit boards made using epoxy glass sheets with copper lami-
nated to one or both sides offer an excellent alternative for larger
area boards. According to one recent study these boards become more
economical on an area basis up to the 1300 to 2000 cm2
range. Since most circuits cannot be laid out without extensive use of
crossovers a 2 sided board becomes necessary when interconnecting many-
leaded components, The most reliable method of electrically connecting
the wiring paths on one side to the paths on the other is through the
use of plated through holes. Additional wiring layers may be required
in the board for 2 primary reasons. It may be necessary to provide
isolation or controlled impedance by the use of ground planes. Also
the required board area can be reduced by about a factor of 2 in going
from a 2-layer board to a 6Tlayer board.

Interconnections at the module level and mother board level might
be provided by two ,other technologies. Wire wrap, where a solid wire
is tightly wrapped around a square post to form a gas tight point has
been shown to be extremely reliable in the telephone system. Changes
can easily be incorporated in wire-wrap interconnections. Perhaps the
single largest drawback is the volume required. Stitch welded wire is
less space-consuming than wire wrap, but is also more difficult to change
and* does not have the long history of reliability that wire wrap has.
Connections are made by pressing a teflon coated nickel wire against
a stainless steel pin with enough force to break through the teflon.
The welder is then fired to make a weld joint.

When selecting module connectors and computer I/O connectors, a
myriad of choices is available. There are tradeoffs to be made in the
amount and type of plating or inlay to be used. Wear must be factored
in. Wear increases with mating force, but adequate mating forces are
required for reliable connections, Zero insertion force connectors are
connectors which are mated without having the contacts touch. One of
the sets of contacts is moved, using a mechanical actuator build into
the connector, to touch the other set of contacts. This type of
connector offers high contact forces with a minimum of "wiping" action
and therefore a minimum of wear, however the need for their use in this
application is not anticipated. Perhaps the most important point is

152

that the connectors must be protected from contamination and mechanical
damage when unmated.

Control of materials and processes used in the fabrication of
packaging components and in the assembly of the finished equipment
requires a substantial effort. Processes must be mature and well docu-
mented. For high reliability packaging nothing must be left to chance,
there must be no ambiguities in specifications, and as much operator
judgement as possible must be removed from the process. There must be
constant vigilance that specifications are followed, and the end products
must be inspected and tested to insure that the product continues to
meet specified standards.

8.2 Packaging the Fault-Tolerant Computer

The two overriding concerns for designing any piece of equipment
are: one, will it do the job it is supposed to, and two, can it be done
in an economical manner. For the fault-tolerant computer we must first
concern ourselves with meeting the reliability goal. Concerns with
size, weight, and the economics of a production model will be brought
to the foreground upon successful demonstration of the brassboard.

The following sections outline packaging concepts for both a
brassboard computer to be flown about 1980 and a production computer
for 1985 flight. The brassboard packaging makes use of well-known
technologies with a proven capability in high reliability systems.
With proper production controls we believe this design could be built
in an economical manner to achieve the 10 10 hour reliability goal. The
brassboard is large and heavy (about 227 Kgms.). Although the technol-
ogy presently exists to reduce the size and weight by a factor of 10,
we believe it is not now mature enough to be used for a 1980 flight.
We are however, predicting that this size and weight saving can
reliably be made in the production model to follow. It should also be
noted that a considerable saving in weight is made if the brassboard
computer uses substantially fewer than this baseline number of modules.

We have assumed that the computer will make use of the air-
conditioned equipment-bay air for'cooling. We have also assumed that
should the bay become extremely hot or cold during ground parking the
computer wili only be turned on after the bay is conditioned to a
reasonable temperature range, for example 0 to 50°C.

153

The demonstration of potential reliability in the brassboard
model is the important goal at this time. Technology cost tradeoffs are
only significant if done a short time before the production design and
based on costs and technologies as they exist then. Cost analysis must
also consider such things as repair philosophy, operational savings
resulting from weight reduction , and the very difficult question of
cost/reliability tradeoffs.

8 (2 .l Brassb0.ar.d Packaging Design

Ambient avionics compartment air is to be used for cooling the
computer. Since wide temperature extremes can be encountered when a
plane is parked unpowered in-Arabia (+71°C) or Alaska (-65OC) we have
assumed that the avionics compartment will be conditioned in the range
of 0 to 50°C before the computer is turned on.

The power dissipation of the brassboard multiprocessor is esti-
mated at 1400 watts. If we assume the air temperature rise of the
cooling air is to be limited to 5.6OC then 12.6 m3/mm of airraxatbe sup
plied at one atmosphere pressure. The fans used.can be designed to
increase their speed at cabin pressures below one atmosphere so the
weight of air delivered per unit time remains about constant. Of course
this air must also cool the fan. This is significant as about35.3 watts/
m3/mm required which amounts to 445 watts additional dissipation. It
should be pointed out that ARINC prefers that forced air not be used.
In our opinion, however, the advantages out weight the disadvantages.

Cooling would be most efficient if the air were drawn directly
over the component to be cooled, Such cooling does cause a buildup of
dust on the components with time, even when the air is filtered. There
is also the remote possibility that water or other fluid could come in
contact with the electronics if the cooling system were designed this
way. The next option is to case each module and conduct heat from the
components to the case where it is subsequently removed by convection.
Although this approach does add the conduction AT to the component
temperature, it is felt to be the better choice for this design. The
cases will not be hermetic. They will be rugged enough to withstand
decompression should it occur. Of course pains will be taken to
reduce the conduction AT by providing efficient thermal paths from
the components to the case,

154

II-

With a 6.35 mm spacing between modules, the convection coef-
ficient for 'laminar flow will be about 19.4 watt/cm2. With about 13

2 cm of convection area (with no attempt to increase the area with fins
or corrugations) the temperature difference between the convective
surface and the air is 5.6OC. If fan power is included, the worst case
AT between module wall temperature and inlet temperature will be 12.8OC.
For a 24 pin DIP package the thermalresistancebetween the package and
convective surface will be approximately 16.T°C/watt using the construction
set forth in the Module Design section. Therefore l/2 watt 24 lead
packages will operate approximately 22.2OC above intake cooling air
temperature.

We have assumed that a bank of 10 fans, each with 10 cfm capacity,
will be arranged to feed a single plenum and filter arrangement for the
computer. The fans will be fitted with flapper valves to prevent air
from blowing back through the fan when it is off. The fans will be
arranged in groups of two. Each group will be fed by 5 diode isolated
power lines and one fan will run while the second fan is held as backup
in case the first fails. The computer will control the switching of
fans. With the ambient temperature around 21.1°C the computer should
operate without excessive overstress on as few as two fans. Expected
fan life can range from 2000 hours to 25,000 hours depending on fan
quality. Of course the more reliable models would be selected for this
application.

It is recommended that a temperature monitor be placed in each
module. This monitor can warn of a single module thermal problem as
well as signalling a problem caused by fan failures, dirty filter,
high avionics compartment temperature, or a combination of these
conditions.

The concept of making each processor, memory, and clock a single
module arises from the fact that these are the smallest entities to
which the system can isolate faults. It therefore seeems desirable to
correct any detected failure by replacing, in a single package, the
electronics containing that failure. It is also desirable to have the
module protected physically from damage inside and outside the multi-
processor assembly. For example, a failure on one module, such as a
short circuit, must not spatter conductive material on the active
section of another module, as propagated failures must be rigidly
guarded against in this architecture. When the module is removed from
the multiprocessor assembly, it is important that the electronics be

155

protected against handling damage and contamination.

The added material to protect the module does raise some design
problems. The primary problem is designing for a reasonable thermal
drop between the components and the outside convective surface. This
would tend to push the design to a thin planar module to reduce the
length of the conductive paths. Other considerations push in this
direction also. A different form factor resulting in a thicker module
would dictate the interconnection of two or more planar structures in-
side the module. Such an assembly would likely prove more difficult
to repair than a single planar structure, and also would be less
reliable. An external consideration that makes the thin module
preferable is the interconnecting bus design for the modules. The
easiest bus design is simply a collection of straight bus bars. Thick
modules would necessarily make the bus longer, so long in fact that the
bus would have to be bent to make the multiprocessor in some reasonable
form factor.

The planar structure suggests a printed circuit card as the
means of interconnection. The dual-in-line (DIP) hermetic package has
been selected as the preferred logic package. It would be desirable,
where possible, to use this package for passive components and for
power supply packaging. For purposes of this study we have estimated
that each processor and each memory with their power supplies, bus
guardian units, and bus isolation gates will require the equivalent of
180 16-lead dual-in-line packages. In order to interconnect these in a
reasonable area the printed circuit card must be of a multilayer
construction. We are allowing 6.45 cm2 of card area per dual-in-
line package. This area includes the overhead for fastening the card
in the module and for the I/O connector attachment.

Ease of module repair precludes adhesively attaching the multi-
layer board to one side of the module structure for good heat transfer.
We would like a system which would allow access to both sides of the
board. If a dual-in-line package is simply soldered into a board, the
only conductive thermal contact is through the DIP kovar leads.
Radiation and convection do not provide low resistance thermal paths
from the package, nor do the kovar leads provide a particularly good
heat flow path. To achieve a better thermal path, "2oz"copper cladding
will be used on both sides of the board. The DIP packages will be
adhesively attached to the top layer of copper using double sticky tape.
Heat will be removed from the board through standoffs coming from both

156

external faces of the module on a 50.8 mm matrix. The screws through
these standoffs will serve triple duty as primary module fasteners,
heat transfer paths, and structural members necessary to withstand
sudden pressure changes. This thermal scheme can keep the temperature
difference between a 16-lead DIP and the modular convective surface
below 33.3Vhtt. If necessary, this AT can be further lowered by
increasing the PC board copper cladding thickness, using a more highly
conductive but less repairable DIP adhesive, and by increasing the
area and/or number of standoffs,

The multilayer printed circuit card will consist of 4 internal
wiring layers plus one ground plane and one power plane. It is not
anticipated that additional ground planes will be required between
wiring layers.

The connector Will consist of 2 rows of 80 pins on 3.96 mm
centers. The pins will be used in pairs to provide doubly redundant
connections to the various buses. A skirt will be provided completely
around the protruding connector pins to provide protection when the
module is not plugged in. This skirt is pressed against a gasket
material when the module is installed to provide a seal between the
exposed connector pins and the convective cooling air. Two guide pins
will be provided to guarantee proper alignment during connector mating
and that the module is not installed backwards.

Two levers can be provided on the outboard end of the module.
These are used to provide the force for both engaging and disengaging
the module connector.

Two guide bars are provided on the module which are used to
engage guide slots which align the module when it is inserted and with-
drawn from the multiprocessor assembly. An external view and cross
sectional view are shown in Figures 8.1 and 8.2.

The multiprocessor case must perform several functions, the
most important of which are listed below.

1. It must provide for the physical protection and support
of the modules placed in it - 20 processors, 20 memories,
and 6 modules containing clocks and I/O access electyonics.

2. It must provide for the electrical interconnections of
the modules to each other and to the external world
through module connectors, I/O connectors, and power
connectors.

157

-

STANDARD MODULE
356x381x25.4m

SKIRT
FOR PIN
PRnTFCTllIN B

CONNECTOR
PINS

RAIL I I.".--. *-.. -

GUIDE r,uIDE
PII4

IHSERTION L
EXTRACTIOil
DEVICE

l

l

l

SEAL

Fig. 8.1.

158

FIGURE 8.2
BRASSBOARD STANDARD mDULE

356x381x25.4mm

INSERTION I INSERTION AND \ND
EXTRACTION EXTRACTION DEVICE DEVICE

CORONENT AND
SUBMODULE SPACE

POSTS FOR SUPPORT
AND THERMAL CONDUCTION

- PRINTED CIRCUIT BOARD

I SKIRT FOR
& PIN PROTECTION

AND SEAL

1 1

CONNECTOR PINS CONNECTOR PINS

- - GUIDE PIN GUIDE PIN

159

3. It must serve to direct the cooling air for proper
cooling.

4. It must assist in providing EM1 protection. (Part of
this burden falls on the module cases.)

Figure 8.3 is a schematic of a case which provides these functions.
The case is 432x457~1245 ~JTI overall outside dimensions. The module
slides are placed on 25.41tun centers, which allows 6.35mm between
adjacent modules for cooling-air flow.

A common plenum, with the 10 fans attached and containing an air
filter, communicates with the module section through a series of holes
which line up with the spaces between the modules. The air exits
through similar holes in the top of the box, which can be protected
against falling objects by a baffle plate. If cooling air is available
in the avionics equipment racks this design can easily be adapted to
the use of this air. The fans can be retained as a backup or removed
based on the reliability of theplase'sforced air system. Not shown in
the figure is a hinged and latching front plate which closes the box.

The modules are guided into the case by module slides, and the
final connector mating is guided by two pins on the module connector
which fit into two corresponding holes at the ends of the box
connector. There are two levers permanently attached to the back of
the module which engage slots in the box to provide the force for
engaging and disengaging the connector. These levers also serve to
lock the modules in place with the box cover providing a backup for
this function.

Connections to the outside world are provided through five
power connectors and six I/O connectors. These connectors are of the
circular, bayonet locking type. The motherboard connector contacts are
of the fork type on 3.96 mm centers and are installed with their
individual insulators in an accurately drilled matrix of holes in an
aluminum plate.

Table 8.2 shows the various signal and power wiring which must
be carried by the computer motherboard. The motherboard wiring consists
of all straight buses. The power buses must be capable of carrying 50
amps at the nominal 28 VDC input voltage. The internal supplies must
be able to operate with a considerable variation in input voltage so
that voltage drop along the line is not as important as 12R losses.
We have assumed a copper bus bar of a cross section 2.54x2.54 mm

160

-

GUIDE
SLOT

VERTILATION

FIGURE 8.3
BRASSBOARD FAULT-TOLERANT COWTER CASE

FAN -

POUER POUER
CONNECTORS CONNECTORS

161

I- -

which will have a resistance of under 5 milliohms for a 1.22 mm
This would produce less than 0.02 volts drop at the end of the bus and
an 12P? dissipation on the order of 5 watts in the bus. The ground
return buses can either be of the same type or can be made common. The
bus bars will be laminated to a .79 mm Lhick piece of GlO epoxy glass
for structural integrity and ease of handling and will be separated from
the bused signal paths, which will be a second board.

A sample section of the board used for signal paths is shown in
Figure 8.4. The I/O net wires are run as signal pairs on opposite sides
of the board while the other signal lines are run over a ground.plane
buried in the center of the board. Wires from the I/O and power con-
nectors are joined to the buses by soldering them to extra through holes
made in the buses at one end.

8.2.2 Production Packaging Design

We project that hybrid technology will have achieved adequate
maturity to be seriously considered for the production fault-tolerant
computer design for 1985 production. Several benefits which will
accrue from the use of hybrid technology when compared to the use of
multilayer printed circuit boards and discrete components are listed
below:

1. A substantial size and weight saving.

2. A small increase in computer speed and a small decrease
in power required - assuming the use of the same
semiconductor chips.

3. A small saving in cost.

4. The stocking of a small number of hybrid circuit types
for repair rather than a large number of discrete
component types.

5. Advances in technology can be used to build hybrids
which can be used as one for one replacements for
old hybrids when repairing the computer.

We further project that semiconductor advances will provide much
higher levels of chip integration and a total power requirement of
350 watts vs. 1400 watts for the brassboard.

The overall design concepts used for the brassboard will be
maintained in the production design. That is, the modularity, bus

162

163

structure, and cooling will be similar. The hybrid circuits will allow
the active area of the computer module to be reduced from 38lx356mm to
38.1x101.6mm The overall module thickness will be 12.7nm and will irrclude
a built in heat exchanger to take care of the increased power density.
The reduced size of the module will require that the connector pin
spacing be reduced from 3.99-2.54mm so that the required number of
contacts can be fitted in the available length. A computer module made
using hybrid technology is shown in Figure 8.5. The interconnections
between the 4 to 8 hybrids inthemodule can be made using either a
multilayer epoxy glass board or a multilayerceramicboard. The ceramic
board can offer a better heat transfer path to the heat exchanger,
although it is more difficult to mount than an epoxy glass board
because it is more easily cracked by thermally induced stress caused by
the difference in expansion coefficient between the board and heat
exchanger. This problem can be designed around by making the heat
exchanger in such a way that it can provide stress relief even though
it is firmly soldered or cemented to the ceramic board.

The production computer case will be made in much the same
configuration as the brassboard. The electronics section will be
152.5x165x635mm without the fans, plenum, I/O connectors, and power
connectors. When these items are added to the box the overall dimen-
sions are 229x229x66Omm compared to the brassboard overall envelope
of 432~457xl245mm Note that no space is required between modules,
except clearance, because cooling is done by directing air through the
module heat exchanger rather than between modules as done on the
brassboard. See Figure 8.6.

It is also possible to package the computer in a one and one-
half ATR box measuring 496mm long by 39Orm-n wide by 19.35mm high as
shown in Figure 8.7. There are some drawbacks to this package which
must be considered. Probably most important is the more complex bus
structure dictated by the requirement that the modules be placed in
2 rows because of the box length limitation. Also, normal racking
would require that the entire computer case be unplugged each time a
module is removed.

164

-

41

C
-

-4 SECT/ON

165

- -

b

-

MODULES

FAH FL ENuM ==4
, Lt

/A-2,5MM

166

FIGURE 8,7

PRODUCTION CASE DESIGN USING ONE AND

ONE-HALF 'ATR BOX FORMAT (496 x 30 x lg.35 mn)
(TOP% FRONT VIEW SCHEMATICS)

F INNECTOR

INTAKE PLENUM

. t , 4 . v

FANS

167 .- - .-

CHAPTER 9

MULTIPROCESSOR SIZING STUDY

The applications study reported in thechapter 3 has been
useful in identifying the functional makeup of some of the important
alternative system implementations that can be foreseen. The study
reported in this chapter concerns the parameters of the multiprocessor
that are impacted by its functional charter, including its survivability.

It is generally expedient to characterize a computer in terms of
its major resources, which are processing speed, memory capacity, and
input/output bandwidth. Speed is particularly difficult to quantify
in the absence of benchmark programs. A common approach is to assume
that the architecture is reasonably well matched to the application
and simply characterize the speed in terms of operations per second
(OPS). An important shortcoming of this approach is that not all
operations are equally fast. Ratner et al. [4] have largely surmounted
this shortcoming in their requirement study by separate designations of
"short" OPS and "long" OPS. Their approach is also followed here.

In the case of a multiprocessor, the memory access bandwidth
assumes a substantially larger importance than it does in a single-
processor computer. The use of a serial memory access bus is of partic-
ular concern, as it can easily become the limiting factor on speed. We
therefore adopt memory bus bandwidth as a primary parameter for this
multiprocessor, along with the other primary factors of processing
speed, memory capacity, and input/output bandwidth already mentioned.

Before proceeding to a discussion of specific parametric
relationships, we shall first treat the major partitioning issues that
relate the parameters of the multiprocessor to the overall functional
requirements for the system. It is clear thattheparameters of the
multiprocessor are not uniquely determined by the system functional
requirements. Following sections introduce parameters that describe
internal mechanisms and functions, and exhibit approximate models for
the determination of processing speed and memory bus bandwidth. The

168

I-

chapter concludes with a discussion of architectural consequences of the
sizing study.

9.1 *tern Partitioning

Chapter 1 describes the system context
The element of that discussion most important

for the multiprocessor.
tothepresent subject is

the significance of digital processing local to, and dedicated to, the
individual subsystems. A certain amount of information processing is
present in most contemporary subsystems, though most of it is analog
rather than digital. With the development of integrated avionics and a
reliable central computer, one could conceive-of a move to centralize
all information processing. To do this, however, would work against
overall economy and dependability. The reasons are indicated in the
chapter just cited.

On the other hand, there is nothing to prevent the use of the
multiprocessor in a highly centralized system if circumstances warrant
it. One example might be an experimental deployment of an integrated
system in a past - generation aircraft, in which local information
processing is minimal. Another example might be a future - generation
aircraft whose functional scope is small enough to fit comfortably in a
single computer.

Looking in the oppositedirection, it is evident that the more
sophisticated future applications can benefit substantially from
distributed information processing. Numerous examples come to mind,
ranging from the preprocessing of data from sensors such as inertial
navigation units, collision avoidance receivers, and microwave landing
receivers, to closed loop high frequency control of each of a redundant
set of small control surfaces on control-configured aircraft. In
large-scale applications such as these, the employment of distributed
processing will not only offload the central computer, but will enable
the inclusion at low cost of additional functions, relating to subsystem
monitoring and diagnosis, that would otherwise not be cost-effective to
implement. The central computer's function in a highly distributed
application, although by no means negligible, would gravitate toward
outer loop control and coordination, with the result that its perform-
ance capacity may not need to be any larger than that of a fully
centralized system of modest scope.

169

According to the foregoing argument, the functional requirements
for an aircraft do not translate simply into performance parameters for
the multiprocessor. Moreover, the converse is also truet the performance
parameters of a central computer do not per se govern the functional
capacity of the system. It is therefore important to consider the
impact of a range of functional requirements on the central computer's
performance requirements. For this purpose, a parametric model has
been developed for the two performance measures most crucial to the
multiprocessor architecture: processing speed and memory bus bandwidth.
Memory capacity and input/output bandwidth are more simply related to
the functional requirements. The next two sections explain the origins
of the parameters of the model.

9.2 Program Execution Parameters

A predominant characteristic of the multiprocessor is its
retention of instructions and data in a common memory. In order to
execute programs, processors must acquire instructions and data from
this common memory and must transfer computed data to it. The use of
cache memories local to processors tends to reduce the volume of common
memory data transfers for a given function for two reasons. First is
the option of storing permanently some fractionofthe overall program
in all of the cache memories. Second is the option of executing
instructions more than once after they are brought from the common
memory. The first involves the cost of replication of instructions
among all processors. The second option is to allow the program
segment to remain in temporary cache until it has executed some number
of times. If this number is very large, the result is more of a
multicomputer than a multiprocessor, and the more dedicated each
processor becomes. If the program segment is executed only once before
beinq overwritten, some repetition will still occur due to the
repeated use of some of the instructions in program loops.

9.2.1 Macros

In this architecture, a certain amount of basic procedure must
be stored local totheprocessors in order to be able to operate at all.
It might be pointed out that the instructions stored permanently in
cache memory act as macro extensions of the microprogram. Indeed, it
is likely that certain cache macros will be moved into or out of micro-
program as they become more or less utilized over the evolution of

170

the system. For the sake of this parametric sizing study, however, it
has been assumed that the only microprogrammed macros relevant to
application programs are those apt to be found in conventional computers,
for example floating-point multiply and divide. To represent the
performance impact of other macros, located in cache memory, we define
the parameter MACRO, which is a bus bandwidth compression factor due
to the use of macros. It is the ratio of the number of instructions
from common memory needed to execute a program with macros, to the
number needed without macros.

.

9.2.2 Looping

Another facet of the architecture is the principle of job step
execution. Job steps are relatively short programs that generate
sample-time updates of control variables. They are executed from cache
memory, which is loaded from common memory for the purpose. At the end
of the job step, its instructions are no longer retained, in order that
the processor can seek a new job step to perform. This produces a cost
in memory bus bandwidth, because cache memory must be reloaded for each
job step. The main advantages in doing so are minimal reconfiguration
penalty and convenient memory and processor resource sharing. During
the execution of a single job step, there is a probability that some of
the instructions brought into cache will be executed more than once, as
in the case of a loop. A parameter called LOOP is used to represent
this probability. LOOP is a compression factor like MACRO, and is the
ratio of instructions fetched from common memory to the number of
executions among them.

9.2.3 Bus and Cache Memory Overheads

The use of a loadable cache memory, in addition to its advantages,
involves some overhead in managing the loading and storing operations
with common memory. For each instruction loaded into cache memory,
there is an average number of instruction times, of the order of one,
used for cache management and loading delays. This number is represented
by the parameter CACHE. Other overheads associated with the memory bus
arise from delays involved in address transmission and data handling.
These are represented by the parameters ADDRESS and DELAY. ADDRESS is
a multiplier on memory bus bandwidth, and DELAY is the delay per fetched
data word measured in short-instruction times.

171

9.2.4 Queuinq

Another parameter of significance in sizing time shared resources
represents excess or unused resources over and above those needed for
serving useful functions. Both instruction execution and memory bus
transfers are subject to queuing delays, which become excessive as the
utilization approaches one hundred per cent. We therefore define a
parameter QUEUE, which is the fraction of available processing resources
that can be allocated to useful work,and another parameter QUEUEBUS,
which is the corresponding fraction of the bus bandwidth.

9.2.5 Executive Overhead

The executive program is run each time a job step is dispatched.
The program will be mostly or entirely available as a macro in permanent
cache memory, but the executive data bases, such as the job queue, event
queue, etc., reside in common memory. The resources consumed by the
executive are dependent on queue length, the complexity of the executive
function, and the number of job steps executed per unit time. The
parameter SAMP represents the gross sampling rate of the computer, and
is defined as the average number of job steps dispatched per second.

9.3. Eunction Parameters

The preceding section identified a number of parameters related
to the multiprocessor architecture. This section deals with a functional
breakdown of the multiprocessor's operation into four categories:
application programs, executive activity, periodic test, and system
redundancy management.

9.3.1 Applications

There are several dimensions to the subject of applications.
They include time frame of aircraft manufacture and logevity, size and
mission of aircraft, aircraft design dependence on integrated system
criticality, accompanying ground aid development and its operational
constraints, and flight regime (takeoff, cruise, etc.). We find a
broad range of potential applications, ranging from non-critical to
wholly critical. Interestingly, over this broad range, the impact on
the resource parameters of the fault-tolerant system is primarily
external to the central computer. This -is partly explained by the fact
that a substantial fraction of the central resources exist purely to
establish system fault tolerance. Secondarily, the resources required

172

for aircraft control tend to move from the central computer out to local
processors in the more sophisticated of the projected systems. All
indications are that applications will nevertheless be the predominant
consumers of central resources. The estimates of Ratner et al. [4] have
been found to be reasonable in comparison with other analyses and
estimates, when adjustments are made for overheads and decentralization.
The actual numbers depend on specific applications, but one can
identify likely ranges in order to establish bounds for sizing. The
parameters that characterize programs are first the operations per
second, which are divided into two categories for short and long
operations. SHORTS and LONGS are the corresponding parameters and are
measured in instructions per second. The execution time ratio of long
to short operations is called R. For applications programs specifical-
ly, we use ASHORTS and ALONGS. Another functional parameter is the
number of data words per unit time, for which we use DATA in words
fetched or stored per second, and ADATA for applications programs.

The required memory bus bandwidth is sensitive to the parameter
AMACRO, the bus compressionfactor for applications programs due to the
use of macros. The diversity of the various applications functions
and their relatively large program volume poses some challenging trade-
off problems for the multiprocessor. The basic tradeoff is between bus
bandwidth and permanent cache memory. Short procedures with high usage
are good candidates for inclusion as cache macros, where long,
infrequent procedures are not. The dividing line depends on several
factors. First, the cost of the memory bus is a nonlinear function of
bandwidth. At low bandwidths, it is relatively insensitive, whereas
it seems to rise steeply at a point that is estimated to be in the area
of ten to twenty megabits per second. At this point, the cost of
permanent cache memory in each processor becomes less severe in
comparison to bus cost. Next, one considers the number bf processors
involved. This number multiplies the cost of permanent cache memory,
whereas in common memory the cost multiplier is three for the principal
memory triad in which the procedure is stored, plus any spare modules.
Finally, theinclusion of procedures in permanent cache as macros
inevitably reduces flexibility by increasing the penalty for changes.

Two main criteria suggest themselves for the selection of'macro
procedures. The first is utility, examples of which are seen in such
procedures as vector and matrix manipulations, trigonometric and trans-
cendental functions, and software module interface operations. The

173

: I. ,.... 0

. - _ ._

second is tasks with very high sampling rates. Such tasks are expected
to be relatively rare in a central computer. Additional procedures may
gravitate into macro form as they become fixed for the foreseeable
remainder of the life cycle.

The situation with looping is somewhat different from that of
macros, in that any tradeoffs must be made in the process of generating
applications programs, and are out of the system designer's hands. The
looping parameter ALOOP for applications programs, then, is almost
purely an 2 priori prediction of looping behavior.

9.3.2 .Executive

Executive program activity has been roughly characterized in
Section 9.2. The program's operation is characterized by the following
parameters. The number of equivalent short operations in one dispatch
is called EXEC. The production of EXEC and SAMP, the overall sampling
rate, gives ESHORTS, the number of equivalent short operations per
second for the executive. Most or all of the executive program will be
in permanent cache memory, so that its macro compression factor, EMACRO,
will be relatively small in value. The looping factor, ELOOP, will
likewise be small, as the executive is a highly repetitive program.
The data access is characterized by the parameter EXDAT,.which is the
average numberofwords accessed for each job dispatch. The product of
EXDAT and SAMP gives EDATA, the total number of data accesses per
second for the executive, The size of EXDAT is more or less proportional
to the number of different tasks that the computer handles. The job
and event queues need to be ordered or searched for every job step
dispatch. The number of words handled per insertion or search depends
on dispatch statistics and search strategy, as well as the number of
tasks. Because of these complexities, and because this data volume is
not a dominant factor in the total picture, no more detailed modeling
is attempted of this operation at this time. We rather treat EXEC
and EXDAT by estimating on the basis of past experience.

9.3.3 Test and Redundancy Management

Test programs are run periodically in processor triads to expose
latent faults in all modules and buses. The frequency of testing is
not directly dependent on the applications programs, but rather depends
primarily on the target failure rate of the multiprocessor and the
predicted module failure rates. The parameters of testing programs

174

.r -. -. -
_- ,7 7-- : .. , ‘, .:.

,.

are these: Each triad requires an average number of short operations
denoted TEST. If there are T triads, a total of TxTEST short operations
are used per test. The test frequency, TFREQ, multiplied by TxTEST
gives TSHORTS, the equivalent short operation rate due to testing. The
parameters TMACRO, TLOOP, and TDATA are defined similarly to their
counterparts described earlier. TDATA is TxTSTDATxTFREQ.

Redundancy management programs are analogous to test programs,
but serve primarily to maintain the integrity of the external system.
Because of the relative simplicityof this category of programs, we
will deal directly with the major parameters RSHORTS, RMACRO, RLOOP,
and RDATA.

9.4 Parametric Models

In the last two sections, we have defined a family of parameters
that lead to approximate models for processing speed and bus bandwidth.
In this section these models are exhibited and discussed.

9.4.1 Instruction Execution Rate

The total instruction execution rate of the multiprocessor is
the product of the number of processor triads and the execution rate
of one processor. It will be convenient to measure execution rates in
SHORTS PER SECOND.

The available execution rate must be sufficient to allow for all
computation functions and overhead functions. Allowance must be made
for all data accesses, during which it is assumed that no processing
takes place. The total instruction execution rate is approximated
roughly as follows:

1 SHORTS/SEC = QUEUE - [EXECUTION RATE + DATA ,DELAYS]. (1)

An expression for the first term is as follows:

EXECUTION RATE = ASHORTS (1 + CACHE x AMACRO x ALOOP)
+ ALONGS (R + CACHE x AMACRO x ALOOP)
+ ESHORTS (1 + CACHE x EMACRO x ELOOP)
+ TSHORTS (1 + CACHE x TMACRO x TLOOP)
+ RSHORTS (1 + CACHE x RMACRO x RLOOP) (21

The terms of the form (1 + CACHE x MACRO x LOOP) represent direct
executions plus a cache'management overhead for those instructions that

are not already resident in cache memory, The term multiplying ALONGS
is similar, except that the direct execution of a long operation takes
R times as long as that of a short one. Equation (2) can be further
broken down by means of parameters defined in the preceding sections:

EXECUTION RATE = ASHORTS (1 + CACHE x AMACRO x ALOOPf
+ ALONGS (R + CACHE x AMACRO 'x ALOOP)
+ EXEC x SAMP (1 + CACHE x EMACRO x CLOOP)
+ TxTEST x'TFREQ (1 + CACHE x TMACRO x TLOOP)
+ RSHORTS (1 + CACHE x RMACRO x RLOOP)

The second term of (1) can be expanded as:

(3)

DATA DELAYS = (ADATA i- EDATA + TDATA + RDATA) DELAY, (4)

and further expanded as:

DATA DELAYS = (ADATA + Ex~Arr x sAMp + TxTSTDAT x TFREQ + RDATA) DELAY
(5)

9.4.2 Memory Bus Bandwidth

The memory bus bandwidth is measured in bits per second. Since
the parameters defined thus far are word-oriented, it is convenient to
model first WORDS PER SECOND. This must be adequate to deliver
instructions and data to the cache memories. Therefore

WORDS/SEC = [BUS INSTRUCTION WORDS + BUS DATA WORDS] ;;;g;& (6)

where ADDRESS is the bus addressing overhead factor, and QUEUEBUS is
the associated queuing factor. The first term can be expanded as
follows:

BUS INSTR WORDS = (ASHORTS + ALONGS) AMACRO x ALOOP
+ ESHORTS x EMACRO x ELOOP
+ TSHORTS x TMACRO x TLOOP
+ RSHORTS x RMACRO x RLOOP (7)

The expression could be further expanded by replacing ESHORTS and
TSHORTS as in (31, but this will be omitted here for the sake of
brevity.

The second term, assuming all data is the same length as an
instruction word, is

BUS DATA WORDS = ADATA + EDATA + TDATA -I- RDATA (8)

The expansions for EDATA and TDATA, as in (51, are omitted.

176

-_ y-7---- -. --. .- --. _.__ -__----- I _---- -- d : .
- -- ; . . .‘. ~,‘.i c,, ,. - . ; *^ . .-‘.

9.4.3 Sensitivities

Given that the independent variables of the parametric models
are known only to an approximation, some of the terms in the equations
are difficult to predict because they .are products of several parameters.
For example, one term in (7), when further expanded, becomes .

ADDRESS
QUEUEBUS x EXEC x SAMP x EMACRO x ELOOP.

Suppose each parameter is estimated to within plus or minus 20%. The
uncertainty range of the term is between 0.8 6 6 and 1.2 , or between 0.26
and 2.98, or greater than an order of magnitude. On the other hand,
the only factors common to many terms are QUEUEBUS, CACHE, ADDRESS, and
DELAY. Of these, the last two are essentially hardware design parameters.
CACHE is a parameter of the system software, which will be determined
at a relatively early development stage. Queuing parameters are
sensitive to the executive program duration, the average job step
duration, and permissible dispatch delays. This issue is further
discussed in Section 9.5.

9.4.4 Parameter Ranges

Table 9.1 lists some approximate ranges for the parameters
defined earlier in this chapter. These ranges are based on various
estimates, and the purpose of this subsection is to provide a degree of
substantiation for them.

QrJEUE and QUEUEBUS: (0.5, 0.7, 0.9). A good deal remains to be
learned about these parameters because of their relationship to delays.
This is further discussed in the next section. The ranges given are
felt to be sufficiently broad to cover any probable value.

R: (5, 10, 20). The ratio of long to short instruction execution
times is a hardware design parameter, unless a highly integrated
processor is chosen in which these operations are previously constrained.
The data format is also a factor. We presently assume a floating point
format. Long instructions account for a large enough fraction of the
processing task to be worth a reasonable hardware investment for the
sake of speed.

CACHE: (1.0, 1.5, 2.0). The CACHE memory loading overhead
depends on the bus speed, the bus delay, and the number of words to be
fetched at one time. The fewer words fetched at a time, the greater
the overhead. If many words are fetched, this overhead tends to

177

II -

TABLE 9.1

MINIMUM, MEDIUM, AND MAXIMUM ESTIMATES FOR SPEED

QUEUE

QUEUEBUS

R

CACHE

ASHORTS 1OOK 200K 400K

ALONGS 25K 50K 1OOK

AMACRO x ALOOP 0.2 0.4 0.6

ADATA 10K 20K 40K

EXEC 100 200 400

SAMP 200 600 1000

EMACRO x ELOOP 0.05 0.1 0.2

EXDAT 30 60 90

TEST 2K 4K SK

T 4 8 12

TFREQ 0.5 1 2

TMACRO x TLOOP 0.05 0.1 0.2

TSTDAT 50 100 200

RSHORTS 1K 2K 4K

FtMACRO x RLOOP 0.05 0.1 0.2

RDATA 200 400 800

ADDRESS 1.2 1.4 1.6

DELAY 1 2 4

AND BANDWIDTH PARAMETERS

MIN.

0.5

0.5

5

1.0

MED.

0.7

0.7

10

1.5

MAX.

0.9

0.9

20

2.0

178

diminish until queuing delays begin to become appreciable. It is
presently assumed that the typical fetch will consist of the order of
eight words, and that the cache overhead will be fractionally greater
than the bus latency alone. This overhead is compensated by the band-
width reductions made possible by the cache memories.

ASHORTS: (lOOK, 200K, 400K operations per second). The appli-
cation study by Ratner et al. 141 previously cited suggests a value for
this parameter just under 200K short operations per second. This
figure is based on the inclusion of some unlikely functions and the
exclusion of some likely ones, in the light of more recent investigations.
We feel that we can project with reasonable confidence to within a
factor of two or so what the nominal sizing of the central computer
should be. Estimates have been made assuming that the following
capabilities will be available in the central computer:

1.

2.

3.

4.

5.

6.

7.

Flight control, including stability augmentation, load
alleviation, mode stabilization, ride improvement, and
flight envelope limiting.

Navigation and guidance, including area navigation,
inertial navigation, autoland, autopilot, and hybrid
navigation.

Air data processing.

Collision avoidance processing.

Display data management,

Centralized engine management.

Integrated aircraft systems management, including
management for fuel, weight, cabin environment, power,
caution and warning, and maintenance data.

The net result is that 200K short OPS remains a reasonable estimate for
an ambitious future application, assuming that local processing is
available for displays, engine controls and various other dedicated
subsystem support functions. An upper limit of double this figure
represents a case where a larger load results either from greater
complexity or from a more centralized system. A lower limit could be
quite a bit smaller, especially for an experimental application, but
for sizing purposes a lower limit of half the expected value is used.

179

ALONGS: (25K, 50K, 1OOK operations per second). This range is
chosen by the same rationale as the previous one. The high end of the
range represents a very substantial computing load, which would have a
hardware impact in size and/or power if it were to be accommodated.
This parameter is one that can effectively be offloaded by local proces-
sing.

AMACROxALOOP: (0.2, 0.4, 0.6). With increasing control sophisti-
cation, the benefits of macros tend to increase, in the areas of matrix,
vector, trigonometric, and transcendental operations for navigation,
guidance, control, and display. Rather little is known about the loop-
ing parameter despite some prior experimentation. As more macros are
used, the incidence of looping will tend to become less, because highly
repetitive operations tend to be the good candidates for macros. For
this reason we have chosen to estimate the combined parameters, instead
of each separately. The given range is a rough estimate based on
Appendix B of reference 141, and on limited experimental experience.

ADATA: (lOK, 20K, 40K words per second). The range given is
based on the instruction execution rate. The data rate applies to
those quantities that are stored and accessed from one job step to
another, which will probably be an order of magnitude below the
instruction rate.

EXEC: (100, 200, 400 operations per sample). The number of
short operations per second required for the executive for each sample
period of each application program in a current experimental implementa-
tion is of the order of one hundred. The given range is based on the
expectation of a more complex job dispatch strategy.

SAMP: (200, 600, 1000 samples per second). Although the number
of samples per second could be quite low in an experimental situation,
a full-scale application might easily range up to the order of a
thousand. At this magnitude, it could have a significant sizing impact
depending on the degree to which efficient queue management strategies
are developed.

EMACROxELOOP (0.05, 0.1, 0.2). Owing to its high usage and
inherent repetition, the executive involves rather little overhead in
cache management and memory bus traffic. It resides mostly in
permanent cache memory.

180

I -

EXDAT: (30, 60, 90 words per sample). This parameter is
sensitive to search strategies as well as the number of functions
served. The range reflects an extrapolation of current experience.

TEST (2K, 4K, 8K operations per triad iteration). This
parameter represents the average number of instructions needed to
conduct one test iteration on one processor or memory triad. The range
reflects experience with self-test programs in the past. It may be
assumed that no one iteration will test every possible element. Rather
each iteration will be designed to test most elements, the remaining
ones to be tested on an occasional basis. In the case of memory triads,
each iteration would test a fraction of the total contents.

T: (4, 8, 12 triads). This range stems from a minimum system to
the large system, including processor triads and memory triads.

TFREQ: (0.5, 1, 2 cycles per second). The test frequency is
related to recovery speed, which is an important reliability parameter.
This range is estimated in part through the results of reliability
modeling. It will depend on module MTBF to some extent. The frequency
can in principle be dropped for peak load periods of short duration, so
that the figure used here could represent a minimum level, while the
'average frequency is boosted during the periods of lower activity.
For modeling purposes, the reciprocal of TFREQ can be treated as a
mean time-to-test.

TMACROxTLOOP:(0.05, 0.1, 0.2). Whether or not the test programs
reside in permanent cache memory, they involve much repetition, which
keeps this factor small,

TSTDAT: (50, 100, 200 words per second). Testing data from
common memory should be virtually negligible.

RSHORTS: (lK, 2K, 4K operations per second).
RMACROxRLOOP: (0.05, 0.1, 0.2).
RDATA: (200, 400, 800 words per second).

These three parameters are foreseen to be small at this time, owing to
the network management experience cited in Ref. 7.

ADDRESS: (1.2, 1.4, 1.6 words times per word). This memory bus
overhead factor depends on the number of words transferred per access.
The estimate given assumes a moderate number of the order of ten, which
may be a reasonable average in order to control queuing delays.

181

I- -

DELAY: (1, 2, 4 operations per data word). This is a measure of
processing overhead to obtain or store data from/to common memory, and
is analogous to the cache memory overhead for instruction fetching.
Because of queuing, this quantity is sensitive to the average number of
instruction words fetched at a time, as well as the number of data
words at a time,

9.5 Problems of Resource Sharing

It is well established that the sharing of resources among
multiple users with random arrivals produces rapidly-mounting delays as
the total utilization approaches one hundred per cent. The delays are
also related to the durations of each use of the resources. The delay
times can be reduced by making the resources faster, by removing users
from the system, or by making each use shorter while increasing the
number of uses, The latter amounts to job partitioning, which is valid
if overheads are neglected.

In sizing the multiprocessor, it is assumed that users can not
be removed from the system, (The use of priorities in allocating
resources is to some extent an approximation of user removal, in that
it favors those users whose needs are greatest). The use of job
partitioning is possible, but resource access overheads must be taken
into account, which acts as a limitation, It is primarily through the
adjustment of resource speeds that delay criteria are met. The queuing
parameters, QUEUE and QUEUEBUS, used in the preceding section, are
resource speed adjustments to meet delay criteria,

The processing'and memory bus bandwidth resources are both
subject to queuing delays, but are substantially different from one
another, The bus isa single resource, whereas there are several proces-
sing resources operating simulataneously. The bus may be used for
short, fixed time periods or alternatively for periods distributed over
a wide range, This factor is determined by cache and data management
algorithms, The processors are used for periods determined largely by
the applications programs, where the distribution is apt to have a
relatively narrow range, The computer!s performance must satisfy near
worst-case conditions for processing resource delays, and average
conditions for bus delays.

The problem of multiple processing resources with low-variance
time periods has been studied recently by Lala [6] as a doctoral thesis
project. One of the interesting results from this work is that near

182

worst-case delays are not as sensitive to system load as average delays
are. This has both good and bad consequences. In order to reduce delays,
the processors must be made substantially faster, which can be viewed as
bad. Once this is done, however, the computer can probably be loaded
with additional jobs without severe impact on delay. This is a complex
issue, made more complex by the inclusion of overheads such as the
executive program, priorities, and the variety of sampling rates involved.
Until this problem is studied further, we must anticipate that dispatch
delays of at least several times the average job step length will occur
often if the computer is reasonably well loaded.

The bus problem more nearly resembles the classical single-server
queuing problem, except that the usage durations can be affected by
management algorithms. Pending further study, it is assumed that the
bus access delays will be minimized by assigning an upper limit to the
number of words that constitute a single transaction. This number must
be a compromise between delays caused by long transactions and delays
caused by access overheads for short transactions. The average delay
is expected to follow the classical pattern, and should amount to a
fraction of the transaction length.

9.6 Three Size Estimates

Table 9.2 summarizes sizing estimates for three variants of the
multiprocessor architecture, corresponding to minimum, medium, and
maximum applications loads, respectively. In all cases, a conservative
estimate is made with respect to queuing and cache management.

9.6.1 Small System

For the small system, it is assumed that relatively little
emphasis need be placed on enhancing macro and looping operations, so
that the corresponding factors will be maximal for the sake of economy.
Testing and redundancy management activities are assumed to be
relatively light. The long-instruction ratio is taken to be medium,
representing rather efficient microprograms. The data delay parameter
is also assumed to be the medium value, by virtue of a microprogram-
supported bus interface and a relatively short limitation on bus access
times. About five percent of the processing resources are attributable
to executive, test, and redundancy management activity. The remainder
is more or less equally divided between applications short and long
instructions. The modest bus bandwidth is largely used by applications

183

I- -

TABLE 9.2

THREE MULTIPROCESSOR SIZE ESTIMATES

SMALL BASELINE
SYSTEM APPLICATION

LARGE OR
CENTRALIZED
APPLICATION

ASHORTS, ALONGS, ADATA, SAMP, T
EXEC, EKDAT
TEST, TSTDAT, RSHORTS, RDATA
TFREQ
ALL MACRO x LOOP
R
ADDRESS
QUEUE, QUEUEBUS
CACHE
DELAY

SHORT MOPS REQUIRED
BUS KWORDS/SEC REQUIRED
BUS M BITS/SEC REQUIRED

@ 16 BITS PER WORD
COMMON MEMORY CAPACITY
PERMANENT CACHE CAPACITY
WRITABLE CACHE CAPACITY
INPUT/OUTPUT BANDWIDTH M BITS/SEC

MIN MED MAX
MIN MED MED
MIN MED MAX
MIN MED MED
MAX MED MIN
MED MED MIN
MED MED MED
MIN MIN MIN
MAX
MED MED MIN

a
1.1 2.4 3.1
270 483 610

4.3 7.7 9. 8,
16K 32K 64K
4K 6K 8K
1K 2K 2K
0.5 0.5 1.0

short instructions, The memory and I/O estimates given reflect a
modestly sized application such as a digital flight control system for
a conventional short-haul aircraft,

9,6,2 Baseline Application

For a reasonably ambitious integrated,distributed aircraft system,
we use the medium applications sizing parameters, A greater emphasis
is now placed on macros and looping, as reflected inthelarger cache
memories. Greater criticality is assumed here, and therefore a higher
test frequency. No change, however, is assumed in the data delay and
the long-instruction ratio. The sizing in all respects is roughly
double that of the small system with essentially no hardware design
differences other than module count and memory bus bandwidth. The
processing resources are now becoming heavily expended in long
instructions, and an increase in their speed would significantly reduce
processing requirements,

9.6.3 Large or Centralized Applications

In the absence of significant local processing in the baseline
application, or for a larger application than presently anticipated, we
assume the maximal applications parameters. In order to accommodate
this additional load without unduly stressing the memory bus bandwidth,
we assume quite extensive macros, We further assume microprograms and
hardware as needed to reduce the long-instruction ratio. Concessions
are also assumed in hardware and software to minimize data access
delays. At this point, executive, test, and redundancy management
account for almost a quarter of the processing resources. The remainder
are once again balanced between applications longs and shorts. The
memory bus bandwidth is dominated by applications shorts, executive
data, and applications data, in that order.

9.7 Summary

By a process of estimation and approximate analysis, we have
arrived at rough projections for the desired sizing of a multiprocessor
family, We anticipate that a production version bould be designed to
support the baseline application, although at the present time, the
option is open to place greater emphasis on the long-instruction ratio,
by providing hardware aids to multiplication, division, and normaliza-
tion, for example, Likewise the memory bus interface might be enhanced

185

by dedicated hardware.

The new baseline processor executes a short instruction from
cache memory in about two microseconds, and has a cache memory capacity
of about 8K fixed and about 2K writable words of 16 bits. The bus
interface is quite efficient, able to perform the equivalent of a
direct cache memory access in about two microseconds.

The baseline memory module would contain 8K or 16K words,
acoording to the total capacity required and the state of semiconductor
memory technology at the time of design.

The baseline memory bus bandwidth is about ten megabits per
second. Work is currently in-progress to better define the speed-cost
tradeoffs in this speed range. The nominal I/O bandwidth is about one
megabit per second, which is not expected to pose any significant
problems.

We can also begin to visualize the size of an experimental model,
whose mission would be oriented to the, small system. The processing
speed would be about the same as the baseline, but the long-instruction
ratio and the memory bus interface delay would probably not be pushed
to their eventual limits. The cache memory would be somewhat smaller
than the baseline. The experimental version would, if feasible,
utilize the full baseline bus bandwidths, in order to demonstrate the
feasibility of expanding the computer capability by the addition of
more modules.

186

I-

CHAPTER 10

DEMONSTRATION OF AN EXPERIMENTAL FAULT-TOLERANT
MULTIPROCESSOR EMULATION

This contract had as part of its goal the construction of hard-
ware to serve as a test bed for the architectual concepts of the system.
An existing experimental fault-tolerant multiprocessor emulator was
used, and certain other test equipment was built for this purpose.
Tests were conducted demonstrating many of the design features and also
pointing to some design problems. Experimental goals, results and
conclusions are discussed in this chapter.

10.1 Experimental Goals of the Demonstration

The experimental design and the exercises performed were chosen
to test specific aspects of the system design. It was desired that the
experiments be of an integrated nature, that is, one apparatus closely
patterned after the projected final product, capable.of testing design
concepts much as they would be integrated in the final product.
Despite this, certain parts of the demonstration were separated out for
isolated technical feasibility demonstration.

10.1.1 Synchronous Processor Triad Operation in a
Multiprocessor Environment

Simultaneous operation of several triads of processors, each
processor of a triad being synchronized with its partners,is a design
requirement of the proposed design. This problem involves initial
synchronization of three processors to start a triad, maintenance of
synchronization over the long term, replacement of a processor with a
spare, and bringing the new member into synch with its new partners.
Additionally, mechanisms for operating multiple triads, such that there
is no hardware interference, needed to be tested. Finally, the
mechanisms for assigning a processor to a triad and to a particular bus
needed to be tested.

187

10.1.2 Synchronous Memory Triad Operation

Simultaneous operation of several triads of memory is similarly
a design requirement of the proposed design. Synchronous operation
of three memory modules needed to be tested. The ability to assign
modules to different portions of the address space also required test-
ing. Finally, the ability to assign a memory module to a specific bus
required verification.

10.1.3 High Speed Redundant Serial Bus

The high speed redundant serial bus is the heart of the proposed
architecture. For this bus to be viable, several features needed to be
demonstrated:

1. High speed synchronous transmission on three parallel buses
from the three different elements of a triad with trans-
mitters located at different points along the buses.

2. The passive arbitration scheme for allocating the use of
the bus to particular triads for short periods.of time
needed to be tested within the context of extremely high
bit rates. Additionally, the impact of the arbitration
scheme on processor triad efficiency needed to be studied.

3. The ability to successfully mask bus errors from a single
bus of three active buses needed exploration.

4. The ability to successfully protect the bus system from
errant processors and memories required verification.

10.1.4 Demonstrate Diagnostic Capabilities for Hardware Faults

The proposed system includes hardware devoted to fault detection
and isolation. It is of course desirable that this hardware be in some
sense minimal or as little as possible while at the same time providing
complete coverage. It was desired that the demonstration show the
adequacy of placing error detection devices in only the processor
modules. Additionally, it is necessary that the experimental system
exhibit the ability to detect and recover from any fault of a large
class of faults with minimal knowledge of the different mechanisms
which contribute to that larger class of faults. For example, in order
for the system to be viable, it is necessary that any processor sub-
module fault be covered and that this be done without an exhaustive

188

list of all possible processor submodule faults and their contributing
mechanisms. Detection and recovery from both hard failures and
transient failures needed to be demonstrated.

10.1.5 Demonstrate Software Framework for a -..- ---
Fault-Tolerant System

In order for the proposed system to function correctly it is
necessary that the core software be perfect. It was important to show
that the proposed system is sufficiently simple and clear that the
required perfect software can probably be produced.

10.1.5.1 Multiprocessor Executive

A simple executive for handling task dispatch in a multiprocessor
environment needed to be developed. This executive should assure that
all of the processor triads are able to work together without distruc-
tive interference or deadlock, while at the same time being simple,
easy to verify, and reasonably efficient.

10.1.5.2 Automatic Configuration Control -

The philosophy for managing the available redundancy is based on
the desire that all redundancy mangement, error detection, configura-
tion control and recovery be invisible to the applications program.
Automatic configuration control, operating invisibly while application
code runs, even in the presence of faults in the hardware, must be
demonstrated.

10.1.5.3 Diagnostic and Latency Testinq

Diagnostic code is required to pinpoint the sources of known
errors and to unearth or discover latent faults. This code should run
in conjunction with automatic configuration control to provide a fault-
free environment for the applications code to run in and to provide
completely invisible error detection and recovery from faults.

10.1.5.4 Automatic Use of Cache Memory

Because of the relatively slow serial bus between common memory
and processor modules each processor is equipped with a small private
cache memory. As with the cache of large machines, the use of this
cache should be as transparent as possible to the applications code.

189

- -

Unlike large machines, a completely hardware-based scheme for cache
management cannot be used, due to cost and complexity. A software-
based cache management technique is required which is invisible to the
user within the overall system software structure, while being reason-
ably efficient at the same time.

10.1.5.5 Applications Program Support

.The final software structure in which an applications programmer
must operate is bounded by various constraints imposed by the require-
ments dictated from the above. It needed to be demonstrated (1) that a
programmer could work with these constraints given normal software
support in the form of assemblers and various utilities, and in the
form of executive supported macro functions, and (2) that the program-
mer would perceive these constraints not as awkward difficulties to be
worked around but as a natural framework in which to work and in which
the task of software generation has been made substantially easier.

10.1.6 Typical Applications Environment

In order to demonstrate fully all of the features discussed in
the preceding section, within the context of a reasonably integrated
experimental apparatus, it is necessary that some of the effort be
devoted to creating a simulated application environment which might be
typical of projected situations for the final product. Within this
context it should be possible to verify the predicted impact of sub-
jective design judgements on the ease of use of this type of system,
and to unearth unforeseen operational problems.

10.1.7 Fault-Tolerant Clock

A fault-tolerant clock or time base is required by the- system.
An experimental demonstration of a highly redundant, extremely accurate
clocking system capable of serving this function is required.

10.1.8 Redundant Power

Reliable power is required by any electronic assembly hoping to
demonstrate high reliability itself. A demonstration of a viable
approach to redundant power management should be made.

190

.

10.2 Experimental Results

In order to demonstrate and validate as many of the design
concepts as possible, an experimental apparatus was used which was able
to emulate many of the design features of the proposed system. This
demonstration was of an integrated nature in that the experimental setup
duplicated much of the environment which a final product of this nature
might encounter, and was therefore able to verify not only the separate
design pieces forming the whole, but was also able to confirm predicted
interactions between disjoint pieces, and in some case unearth unexpect-
ed interactions.

The basic experimental apparatus consisted of a fault-tolerant
multiprocessor, modeled along the lines of the proposed system. The
multiprocessor served as the control computer for a Boeing 707 aircraft
as provided in simulation by'the Draper Laboratory's hybrid computer.
The fault-tolerant multiprocessor consisted of 14 National Semiconductor
IMP-16 based processor modules, seven common memory modules of 2K x 16
words, two I/O ports, and six I/O nodes. There was additionally a
monitor processor for observing the operation of the system. The
processor modules included 1K RAM/lK ROM cache memory storage. With
the 14 processor modules it was possible to operate up to 4 triads of
processors simultaneously. With the seven RAM modules it was possible
to operate two memory triads. The redundant data busing system was
triply redundant and each attached module had two Bus Guardian Units
associated with it for protecting the bus system. An I/O node remote
from the fault-tolerant multiprocessor and local to the hybrid computer
provided A/D and D/A interfacing to the simulated aircraft as shown
in Fig. 10.1.

This equipment was designed and constructed under an Independent
Research and Development program at the Draper Laboratory, and most of
the core softwarealgorithms were developed under a National Science
Foundation Grant. The digital autopilot software and its attendant
system integration were activities of this contract.

10.2.1 Processor Triad Operation

Synchronous operation of three processors as a triad was
achieved early, with little difficulty. The ability to rapidly replace
and resynchronize a failed or deactivated processor within a triad was
also demonstrated with little difficulty. The mechanisms for arbitra-

191

I XEROX
9300

ITAL)

. . *.
m5Qa -* . .::;a ..:. ‘: - *-*

P
\ *.

==#l.

. . *. . .’ - : .:..- . . .- ‘.* \: , -- .*.*.’ _..-a- .

* PATCH
., PANEL

,

.
4 n

FAULT-TOLERANT
MULTIPROCESSOR

.

I 4

Figure 10.1. Demonstration System Diagram.

ting which processor triad was to receive control of the bus system was
refined. No unexpected interferences between processors were observed
except for those associated with the competitive poll. The experience
with the competitive poll is discussed in greater detail in Section
10.2.3.

10.2.2 Memory Triad Operation .-

Synchronous operation of three memory modules as a triad was
also achieved early. Memory modules of a triad were automatically
synchronized, and the mechanism worked flawlessly and without difficulty.
No difficulty was encountered in assigning modules to serve different
portions of the common memory address space or in assigning modules to
particular buses.

10.2.3 High Speed Redundant Serial Bus

Synchronous transmission and reception of identical signals from
three different sources located at different points along the bus was
demonstrated within the integrated system for data rates up to 2 MHz.
Bus length in the experimental equipment was roughly 2 meters, about
three times the bus length for the proposed breadboard. Data bits were
placed on the data bus on the rising edge of the system clock and
strobed on the falling edge. The clock was a square wave. Most of the
propagation delay from transmitter to receiver was associated with
active circuit device delays. Because of these delays data bits were
barely stable at the receiver output when they were strobed, thus
limiting bus speed to roughly 2 MHz. They remained stable well past
the next rising edge of the system clock. The proposed specification
moves the strobe to a full bit period after a data bit transmission
begins, thus allowing an additional l/2 bit period for permissible
propagation delays. Additionally, better device selection can reduce
propagation delays by a factor of 2. Thus, by combining both improve-
ments it should be possible to operate the serial bus at 8-10 MHz.
An electrical model of a 10 MHz bus was constructed and tested at up to
15 MHz to verify proper electrical performance of the higher speed bus.
These tests indicated that an 8-10 MHz bus is feasible.

Since propagation delay along the short bus did not account for
the major portion of the transmission delays, the siting along the bus
of the 3 transmitters had no effect on the results.

193

The passive arbitration scheme for allocating the use of the bus
to particular processor triads worked as intended. However, the competi-
tive poll number of the experimental system did not include a dynamic
priority adjustment to boost a triad's priority if it lost a poll. The
competitive poll number included only a field to assign a nominal fixed
priorityto a triad and a unique identifier field. When several proces-
sor triads were operating with the same nominal priority, it was found
that there was a tendency for the triads with high identifier numbers
to lock out those with lower numbers. For this reason it was necessary
to add a dynamic priority adjustment field to the competitive poll
number in the specification. This field value is boosted by 1 each
time a triad loses a poll competition to another triad of equal assigned
priority, saturating at a maximum value. It is reset to zero when the
triad wins a poll. Thus, a triad which wins has its dynamic priority
field set to zero. If it re-enters competition for the bus before
other triads of equal nominal priority have been serviced, they are
assured of service before that triad is again granted access to the bus.

All receiving elements of the system used two-out-of-three
voters to mask bus errors. The error masking system worked as intended
with no unexpected results.

The Bus Guardian approach to bus protect performed according to
projection. Failed modules could be easily and reliably separated
from the bus sytem.

10.2.4 Fault Diagnostic Capabilities

Each processor module of the experimental system included
special circuitry for noting and recording disagreements among tHe
three copies of each bus line. All other modules or receving elements
had only error masking circuits.

The error detection circuitry functioned as expected. Most
faults manifest themselves as bus errors, and were therefore easily
detected. Certain classes of latent faults were detected by diagnostic
programs which basically forced bus errors if a latent fault existed.
Records kept by diagnostic programs and fault isolation procedures
enabled the successful test of techniques for locating both transient
and hard failures.

Most faults were detectable as one of a large class of faults.
For example, all processor failures were detected at the bus without

194

the aid of special diagnostic code to test the processor or knowledge
of the fault mechanism. Some special attention to specific failure
modes and effects was required to devise latent fault detection programs.
While code was not written for unearthing all possible latent faults,
sufficient latent testing code was written so as to establish consider-
able confidence that all latent faults could have been tested and
detected.

The bus isolation mechanism served as intended and was able to
isolate all processor failures from the bus system.

This integrated systems demonstration illustrated all significant
aspects of the fault-tolerant computer architecture. It demonstrated
the hardware capability to mask faulty unit outputs in the short run,
and the capability to detect the fault, isolate the unit, and to
reorganize so as to restore system health, all concurrent with normal
program activity.

10.2.5 Software Experience -_ _----

The software that was provided for the demonstration consisted
principally of executive or system software and applications software.
Executive or system software was written and debugged by staff throughly
familiar with the experimental hardware and design objectives. The
applications software was provided by a team which was briefed only in
general terms as to the nature of fault recovery mechanisms and the
overall system architecture. The applications software team was
provided with detailed explanations of the executive-to-applications
interfaces and executive services, as well as a reasonably short list
of programming constraints.

10.2.5-l Multiprocessor Executive

The multiprocessor executive provided a simple task dispatch
mechanism. Tasks awaiting their time of execution were organized in a
queue sorted by scheduled start time. As processor triads became free
(having finished a previous task) theywouldconsult this list and take
the next scheduled job. Jobs could be inserted into any relative
position of the time queue as long as it remained properly sorted.
Executive functions provided for the routine iterative scheduling of
the same job step, as might be required for an autopilot iteration for
example. Alternatively, any job, by a call to the executive, could

195

insert a job into the time queue. The executive also handled the removal
of a job from the queue when it was taken up for execution.

In addition to the time queue, the executive handled an event
queue. Jobs in the event queue have their execution blocked waiting
for a particular event to occur. When the event did occur, the affected
job was moved from the event queue to the top of the time queue. Jobs
could be inserted into the event queue by any job, through a call to the
executive. Events could be signaled by the executive or by another job
through a call to the executive.

The executive also provided interfaces for all I/O traffic,
common memory to/from cache data transfers, real time clock, and for
other relatively simple functions commonly thought of as executive-
related.

Critical to the success of the demonstration were the executive
functions which provided for automatic error logging and recovery.
Executive functions performed all common memory to/from cache transfers,
and all I/O. During these functions any errors that might occur will
become visible. The executive handled the proper logging of the error,
scheduled recovery action, and, via voting, masked the error for the
applicationstaskwhich was using the executive function. Thus, to the
applications task, error handling is completely invisible. Additional-

ly, since hardware monitoring is used, error checking, error masking
and majority voting do not impact the applications execution speed.

The executive schedules error diagnostics, latent test routines,
and error recovery routines, using basically the same mechanisms used
to schedule applications tasks. These executive tasks, running con-
currently with the applications tasks, but in different processor
triads, maintain the system, repairing faults, searching out latent
failures, configuring processor triads and memory triads, and starting
and stopping triads as required. Thus in the background, behind the
system application, continuous activity is in progress to maintain the
integrity of the system, an integrity that assures faultless and error-
free execution of applications software.

An executive providing these functions was written for the
experimental test hardware. Although it was not a complete executive,
in that only representative latent faults were tested, the executive
did provide the basic facilities for providing error free execution of
both executive and applications code. The software framework for

196

I‘-

latent test procedures was fully developed, although it was only
sparsely populated. Error detection and recovery from all classes of
faults was demonstrated in the simulated environment without interfer-
ing with the appications tasks.

10.2.5.2 Cache Memory Management

The experimental hardware and the proposed future system both
have a common memory shared by all processor triads and private cache
memories which are part of the processor modules. Programs are
executed exclusively out of a processor's cache memory. Clearly, the
burden of program loading from common memory, program overlaying, and
other functions associated with bringing sections of code from common
memory to the cache for execution could not be placed on the applications
coding.

In the experimental computer, a software cache-memory management
system was provided as part of the executive. At the subroutine call
interface, conventions were adopted that provided for the automatic
loading of called routines. A last used, first out algorithm cleared
space in the cache if unused space was not available. If a calling
routine was dropped from the cache to make room for loading of the
called routine, it is reloaded by the subroutine return interface.

The efficiency of this process of loading instructions into the
cache before execution will depend a great deal on the number of times
an instruction is executed each time it is brought from common memory.
Each word brought from common memory will take 5.25 usec in the proposed
sytem. Thus one triad executing 190K instructions per second could
completely fill the bus capacity. In the experimental system, it was
found that the applications programs executed between 10 and 40
instructions for every instruction brought from common memory. If an
overall average of 20 can be maintained in the proposed system, a
processor triad now projected to have a raw computing power of 300K
instructions per second would load the bus with 15K instruction fetches
per second. With reasonable allowances made for data transfers and
queueing overheads, this suggests a maximum capacity of 4 or 5 processor
triads before saturating the memory bus.

197

10.2.5.3 Application Software

The application which was coded for this experiment involved an
autopilot function for a Boeing-707-like aircraft and various instrument
redundancy management tasks. The autopilot function performed was
control wheel steering. This included rate stability augmentation as
well as attitude hold loops. The redundancy management tasks involved
various analytic redundancy management calculations so as to detect
and identify simulated failures in dual sensors. Figures 10.2, 10.3
and 10.4 show flow diagrams for the autopilot functions used.

The application programming team was familiarized with the over-
all operating system and the details of the interfaces between appli-
cations software and the executive. Particular attention was given to
an explanation of the cache memory management techniques and the result-
ing constraints on the applications software. The programming team was
familiar with real-time control and therefore accepted as normal the
automatic scheduling of iterative tasks and the overall iteration/job
step orientation of the executive.

Surprising little detail was given concerning the triple-redun-
dant nature of the processing taking place, or as regards the fault
location and isolation techniques used by the executive. Indeed some
of the programmers had virtually no acquaintance with the fault hand-
ling procedures. Since no effort was made to hide these details from
the applications programmers, their deletion from the overall program-
mer orientation can probably be explained by the press of time and the
fact that except for personal curiosity they had no real reason to know
how fault tolerance was achieved. The goal had been to provide a
system in which fault-tolerant mechanisms were invisible to the appli-
cations coder, and to the extent we succeeded there was no need to
explain the mechanisms to the programmer.

The programmershadno greater difficulty generating the appli-
cations code for this machine than they would have had for simple
machines of similar instruction sets. The visible parts of the
executive did appear as positive assistance and enabled them to produce
the multi-loopsampleddata control algorithms with little difficulty.
The use of the cache memory management techniques chosen did not seem
to hinder or to make easier the task of coding these algorithms.

Once written, the applications code ran concurrent with execu-
tive fault-detection and isolation code in systems of two, three, or

198

. I

M --B
STICK

K, -L INTEGRATOR

INPUT L - 4.

Fig. 10.2 Pitch Control.

199

$--ml .
--L .J e

STICK F.
INPUT

INTEGRATOR

Fig. 10.3 Roll Control.

200

-

?

K7 ,

P

%
* AIRCRAFT

WASHOUT FILTER 4

i

Fig. 10.4 Yaw Damping.

201

four triads of processors. Fault detection and recovery enabled the
system to tolerate multiple serial errors without impact on the appli-
cation. Indeed, the system's ability to run despite hardware faults
provided a system with virtually 100% availability.

The minimum system capable of executing all applications tasks
and the background systems management routines was a three-triad system.
The computer could tolerate failures of 5 of the 14 processors before
impacting the performance. Below three triads, the autopilot function
was maintained at real time, and other functions slowed to conserve
computational resources. At one triad, all but the autopilot functions
stopped. The control wheel steering and stability augmentation were
then maintained at real time and consumed all of the system computation-
al power.

10.2.5.4 Software Reliability Experience

The difficulty in obtaining reliability in the demonstration
software can be thought of ad indicative of the problems associated
with producing reliable software for a future system. It is of course
true that a full system will be more complex, but it is also true that
software verification aids will be better.

The basic core executive and configuration controller was rough-
ly 3K words of coding. This was produced in assembly language and
debugged largely in simulated situations in the monitoring processor
and not even in the actual experimental multiprocessor. Because of
poor visibility into the functioning of the individual processors, the
system needed to be virtually bug-free before installation in the
multiprocessor. The individual processors could not be single stepped,
for example, and there were no indications of internal states to debug
from.

Experience showed that, in the code produced and throughly
tested before installation, there were three undetected program errors.
Of these errors two were discovered within the first days of operation.
The remaining error in anunused module of the executive remained
undetected for a month. Since that time no new errors have been
discovered over the 6 months of operation.

It can be projected from this experience that it is not impracti-
cal to expect that the core software can be produced error-free with
reasonable investments in verification and testing.

202

The applications code has not been as error free as the core
software. Most of the errors have been algorithmic in nature, with
incorrectly chosen gains for example. This type of error is more
difficult to weed out without full operation in the simulation. All
errors in the application programs were corrected after less than a
week of introduction involving three or four simulator sessions. Again
the proposed system will clearly be more complex, but extrapolating
from present experience suggests that error-free applications program-
ming is not unobtainable.

10.2.7 Fault-Tolerant Clock Experience

The system test bed did not provide for testing of clocking
concepts. Consequently, these have been tested so far in stand-alone
configurations and on the CERBERUS multiprocessor built and used in
connection with earlier fault-tolerant architectural experiments at the
Draper Laboratory. For a discussion of the present status of experience,
refer to Volume II.

10.2.8 Redundant Power Experience

No redundancy of power conversion or distribution was attempted
in the test bed. The present approach is therefore still largely con-
ceptual, except that a protective module power interface has been built
and preliminarily tested. Power redundancy is further discussed in
Volume II.

10.3 Demonstration Conclusions

The experimental apparatus constructed and tested served as a
basic validation tool for most of the design concepts of the proposed
system. While certain problems or unexpected results were encountered,
these were largely minor and easily corrected. The overall agreement
between projected performance and actual operation of the experimental
hardware further serves to bolster confidence in the design
methodology.

Operation of the integrated emulation of the hardware in the
707 applications environment demonstrated the overall suitability of
this class of designs to aircraft control situations.

203

APPENDIX I

The following program, 'states', solves the multiprocessor
Markov model described in Section 5.3. To recapitulate briefly, there
are 146 states in the model. Each state is uniquely defined by 8
parameters: .the number of undetected and detected failures in processor,
memory, bus and bus guardian units respectively. The system starts out
in 'All Good' state. The final state is the 'System Fail' state.
Therefore initially the 'All Good' probability is unity and all other
state probabilities are zero. The program, first of all, computes all
the non-zero state transition rates. Having computed the state
transition matrix which has the dimensions 146 by 146 it computes the
state probability vector iteratively as a function of time py
multiplying the transition matrix Q, the old probability vector SP and
a time-step 'DELTA'.

The program accepts a number of variables as input. These are
defined below:

Numloop: Number of times the program has to be repeated
with a different set of inputs each time.

The following set of input variables have to be defined 'Numloop'
times.

Iter & Delta: Iteratively update the state probability vector
'Iter' times using a time-step 'DELTA'
milliseconds,

NSKIP:

P,M,B,G:

Print the results every 'NSKIP' iterations.

Initial system configuration defining number
of processor, memory bus, and bus guardian
units.

FP,FM,FB,FG: Failure rates per hour of the respective units.

FGD,FGE: Failure rate per hour of BGU in the disable and
enable modes respectively.

204

RP,RMrRB,RG: Recovery rates per hour of the same units.

The program outputs the following state probabilities:

PGOOD: Probability of the 'All Good' stae.

PFAIL: Probability system has failed.

PSUCCESS: l- System Fail Probability.

Pl,P2,P3: Probability of having exactly one two or
three (detected plus undetected) failures.

PNM: Probability of having N undetected and M
detected failures for various N and M combin-
ations.

A listing of the program "States" follows.

205

CL./1 0PT1n121N6 ConPILLR STATESt: PROCEDLRE OPTIONS(HAIN)i
DRAPER LAD LISTTIM FORtlATTER CHARLES STARK DRAPER LABDRAl;ToRY, INC. CUBRIDGE, IIASSACHWETTS

WR LEVEL NEST

100

*oooooooo’, ‘00000001’.
‘00000012’, ‘00000020’,
‘00000102’. '00000110',
'00000210'. '00000300',
'00001011'. '00001020',
'00002000', '00002001'.
'00010001', '00010002'.
'00010101'. '00010110'.
'00011100'. '00012000'.
'00021000', '001Q0000',
'00100020'r '00100100'.
'00101001'. '00101010'.
'00110010', '0b110100',
'90200100'1 '00201000'1
'01000011', '01000020',
'01001000'. '01001001',
'01010001', '01010010',
'01100010'. '01100100'.
'02000100'. '02001000'.
'10000011', '10000020'r
'10001000'. '10001001'.
'10010001'. '10010010'.
'10100010', '10100100'.
'11000100'. '11001000',

~'20001000');

'00000002',
'00000021'.
'00000111'.
'00001000',
'00001100',
'00002010'.
'00010010'.
'00010200'r
'00020000'.
'00100001',
'00100101'.
'00101100'r
'00111000'.
'01000000',
'01000100',
'01001010'r
'01010100',
'01101000'.
'10000000'1
'10000100',
'10001010'.
'10010100'.
'10101000',
'20000000',

'00000003', '00000010's '00000011'.
'00000030', '00000100', '00000101',
'00000120', '00000200'. '000002019,
'00001001'. '00001002'. '00001010'.
'00001101', '00001110'. '00001200',
'00002100'. '00003000', '00010000'r
'00010011', '00010020'. '00010100'.
'00011000'. 'OOO1lOO1'r '00011010'.
'00020001'. '00020010'r '00020100',
'00100002', '00100010'. '0010001%',
'00100110', '00100200'. '00101000'r
'00102000'. '00110000'. '00110001'.
'00200000', '00200001', '00200010',
'01000001'r '01000002'. '01000010',
'01000101', '01000110'r '01000200',
'01001100', '01002000', '01010000'.
'01011000'r '01100000'. '01100001'.
'02000000', '02000001'. '02000010'.
'10000001', '10000002'r '10000010'.
'10000101', '10000110'1 '10000200',
'10001100', '10002000'1 '10010000',
'10011000'. '10100000', '10100001'.
'11000000', '11000001'. '11000010'.
'20000001', '20000010'1 '20000100',

DECLARE UDRD CHiR(8);

OECLARE 1 MHflSS,. 2900 :
1 2 U FIXED OECIHALI2) INITIAL

::
(135)O. (1511, (5)2, (1511, (1012, (15)lr (1512, (15)1, (20121,

2 0 FIXED OECIIlALl2 1 INITIAL
1 ~0,~21~1,2r31.2,3,~2~~3,1,2,3ro~2,313~~,
: 3,2r~4~3r0,1,2,1,2,2,(2~~1,(3~2~,2r01~4~1~0~1~2~1,2,2,~2~~1,~3~2~,

2r~2~~0,~4~1~,0,1,2,1,2r(2)o2~,2,~3~~0,l4~1~,0,1'2,
1 l,2,2,(2)(1,(312),2.(4)(0,(4)l))i

STATCSL: PROCEOWE OPTIONS(HAIN);

DECLARE STATE(145 1 CHAR(8) INITIAL(

3700 : DECLARE (JP,JHeJB,JB,KP,KIl,KB,KG) FIXED DECIMAL(l);
3800 1 DECLARE (ZJP,ZJ~,ZJB,ZJGrZKPIZKnrMB,ZKG) CHAR(4);
3900 I OCL W 146,146) FLOAT OECIPIAL(16 1;
4000 1 OCL SP(146 1 FLOAT DECIHALf 16 1 i
4106 i OCL PXf 146 1 FLOAT DECIMAL(16 1;
4200 1 DCL fA,PGGDD,PSUCCESt) FLOAT OECIIlAL(16);

206

P
-

PL/I OPTIMZING COMPILER STATES2 : PROCEDURE OPTIONS(HAIN I ;
DRAPER LAB LISTING FORtlATTER CHARLES STARK DRAPER LABORATORY, INC. CAHBRIOGE, TIASSACHUSETTS

NMBR LEVEL NEST

4300 1 OCL MDX FLOAT OECIHAL(6 1;
4400 1 PCL IFAIL FIXED DECIHAL(3 1 INITIAL(1461;
4500 1 OCL ~PU,tlU,BU,GU,PO,tlO,BO,GO, FIXED DECIHAL(1);
4600 1 OCL (P,H,B,G) FIXED DECIflAL(2);
4700 1 OCL ~WORO1,UORD2,WORO3,WORO4~ CHAR(B);
4800 1 OCL ~ZPU,ZflU,ZBU,ZGU,ZPO,ZMO,ZBO,ZGD) CHAR(4);
4900 ! ' OCL IOELTA.TIHE,ITER) FIXED DECIMAL(

. ..-...- ,,,,I,,,,*,,,,,,o,,,,,.,,,,.~..~,,,,,,,,,,,,,,,..,..,,,
; i
; /* THE FOLLOWING DEFINES ALL POSSIBLE SYSTEM STATES SUBJECT TO ;
i UC=2 AND UtD<=3. i
i I q 1; ;
; 00 JP = 0 TO 2; L& X400 ¶$;
i 00 JH = 0 TO 2; L& x300 $$;
; OOJB=OTO2; 66X200$4 ;
i DO JG q 0 TO 2; &h Xl00 $$;
i 00 KP = 0 TO 3; L& x40 a$ i
: OOKH=OTO3; &&X30*$;
; 00 KB = 0 TC 3; hb x20 $6 ;

00 KG = 0 TO 3; &I x10 *a i i
;
i
;
i
i
;
;
i
i
i
;
;
i
;
;
i
;
;
i
;
i
i
;
i
i
;
i
;
;
i
;
i
;

IF I>145 THEN GO TO X400; ;
IFT JPtJfl>P 1 THEN GO TO X300; i
IF(JPtJtltJB>2) THEN GO TO X200; ;
NUH.U(I 1 = JPtJtltJBtJG; i
IF(NUH.U(I)>P) THEN GO TO X100: ;
IF(KPtNUIl.U(I I>31 THEN GO TO X40;
IF(KPtKtltNUtl.U(1)>3) THEN GO TO X30;
IF~KHtKPtKBtNUfl.U~1)>3) THEN GO TO X20;
NUH.O(I) = KGtKPtKIltKB;
IF~NUH.U~IlttJJM.O~I)>3) THEN GO TO X10;

ZJP = JP;
ZJII = Jfl;
ZJB q JB;
ZJG = JGi
ZKP = KP;
ZKH = KH;
ZKB = KB;
ZKG = KG;

STATE(I) =SUBSTR(ZJP.4)~~SUBSTR(ZJH.4)~~SUBSTR(ZJB.4)~~SUBSTR~ZJG.41~

;
i

SUBSTR(ZKP,4)1 iSUBSTR(,ZKH,4)IiSUBiTR(ZKB,4)I iSUBSTR(ZKG.4);
PL PUT EDIT (I,STATE(I)) (SKIP(l),Fl3),X(3).A(8));

i
i
;
i
;
;
i
;
,
;
i
;
i
;

PUT EDIT (ZJP,ZJtl,ZJB,ZJG,ZKP,ZKMsZKB,ZKG) (A(4));$$
I = 1t1;
X10: END;

X20: END;
X30: END;

X40: END;
X100: END;

X200: END;
X300: END;

X400: END; */

i
;

;
i
i

. ,,,,,,.,,,.,.,,,,,,.,,,,,,,,,,,,,,,,,,,,.,.,,,,,,,,,,,,,. iii;; OSSSSS~,~,,,,,,
i

.

.o.,,,,,,,,,,,,,o,,

207

PL/I OPTItlIZING COflPILER STATES2: PROCEDURE OPTIONSLtlAINti
DRAPER LAB LISTING FORtiATTER CHARLES STARK DRAPER LABORATORY, INC. CAHBRIDGE, tlASSACHUSET-TS

NtlBR LEVEL NEST

1
9500 1
9600 1

1
9800 1

11
10000 1 1
10100 1 1
10200 1 1
10300 1 1
10400 1 1
10500 1 1

11
11
11

10700 1 1
11

10900 1 1
11000 1 12
11100 1 12

1 12
1 12

11400 1 12
11500 1 12
11600 1 12
11700 1 12
11800 1 12

1 12
11900 1 12
12000 1 12
12100 1 12
12200 1 12
12300 1 12

1 12
1 12
1 12

12500 1 12
12600 1 12

1 12
1 12
1 12

12800 1 ii w = Pw1;
12900 1 12 HU = HU+li
13000 1 12 BU = BU+l;
13100 1 12 GU = GU+l;
13200 1 12 ZPU = PU;
13300 1 12 ZtllJ = HU;
13400 1 12 ZBU q BU;
13500 1 12 ZGU = GU;
13600 1 12 PU = w-1;
13700 1 12 Hll = W-1;

/* READ IN PARAHETER VALUES */

GET OATAL NUULOOP 1;
PUT DATA1 NUtiLOOP I ;

00 N=l TO NUtlLOOPi

GET OATAlITER,OELTA,NSKIP)i
PUT OATAtITER,OELTA,NSKIP)i
GET OATA(P,tl.B,Gt;
PUT OATA(P,tl,B,Gt;
GET OATA(FP,Ftt,FB,FG,FGO.FGE.RP,RH,RB.Rt)i
PUT DATA(FP,Ftt,FB,FG,FGO,FGE,RG)i

/* THE FOLLOWING DEFINES THE ELEMENTS OF THE TRANSITION INTENSITY X 9 *

MATRIX */
9 = 0;

00 I = 1 TO 145: /I x1000 */
IF NUll.O(Il = 3 THEN GO TO S-FAIL; /* ONLY TRANSITION FROM 0=3 IS (FAIL) l /
TO SLFAIL) */

/* OBTAIN THE PRESENT STATE’S PARAMETERS l /
PU = SUBSTRLSTATE(I),l.l)i

HU = SUBSTR(STATElI),2,1);
BU = SUBSTR(STATE(I),3,1);
GU = SUBSTR(STATE(I),4rlti
PO = SUBSTR(STATEII),5,1);
HO = SUBSTR(STATE(I),6,lli

5; = SUBSTR(STATE(Il,7,11;
= SU3STRLSTATE(I),8,11;

POX = GO*P/(PrH);
HOX = GO*H/(P+H);
IF (3-BO)>3 THEN BX=B-BO; ELSE BX=3;

/* ANOTHER FAILURE IN ANY OF THE FOLLOWING CASES KILLS THE SYSTEM */

IF(NUH.U(I) = 2) THEN GO TO S-FAIL;
IF(NUM.U(I)+NUH.O(I~=3~ THEN GO TO S-FAIL;

/* FIND THE STATES TO WHICH TRANSITIONS TAKE PLACE FROM STATE I r/

208

PL/I OPTIJlIZING CC’HPILER STATESL: PROCEDURE OPTIOHS(HAINJ;
DRAPER LAB LISTING FORHATTER CHARLES STARK DRAPER LAGORATORY, INC. CAMRIDGE, J4ASSACHUGETTS

NMBR LEVEL NEST

13800
13900
14000
14100
14200
14300
14400
14500
14600
14700

14900
15000
15100
15200
15300
15400
15500

15700
15800
15900
16000
16100
16200
16300
16400

16500
16600
16700
16800
16900
17000
17100

17200
17300
17400
17500
17600
17700

17900

18000
18100
18200
18300
18400

1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 123
1 123
1 123
1 123
1 123
1 123
1 12
1 12
1 12
1 12
1 123
1 1234
1 1234
1 1234
1 1234
1 1234
1 1234
1 123
1 123
1 1234
1 1234
1 1234
1 1234
1 1234
1 1234
1 123
1 123
1 1234
1 1234
1 1234
1 1234
1 1234
1 1234
1 1234
1 123
1 123
1 1234
1 1234
1 1234
1 1234

18500 1 1234

BU = GU-1;
6U = GU-1;
WORD1 = SUGSTR(ZWr4J~~SUBSTR~STATE~IJ,2,7J;
uGRD2 = SUBSTR~STATE~I~.1,1J~~SUBSTR~Z~,4J~~S~STR~STATElIJ,3,6~;
WORD3 = SUBSTR(STATE(I),1,2J~~SUBSTR~ZBU,4)~~SUL)STR~STATE~IJ,4,5Ji
WORD4 = SUBSTR~STATE~IJ,1,3J~~SUBSTR~ZGU,4J~~SUBSTR~STATE~IJ,5,4~;
11 = SMJHLWORDlJ;
;‘3 q SNUti~WDRD2Ji

= SJiUH(UORO3J;
14 = SNUtUUORD4J;

/* THE FOLLOWING 4 TRANSITION3 ARE FRDJI STATES U=O W

IF

IF

NUH.U(IJ = 0 THEN DO;
G(IsIlJ = (P-PO-PDX WFP;
G(III2J q (H-HLJ-HDXJ*FH;
G(I.13) = LB-BDJ*FBi
G(I.14J q 2*(P-PO-PDXtJl-MD-JQX J*FG;
PUT D~TA~9~1,11J,9~1.12~r9~1,13~,G~1,14~J SKIPLlJ;
END;

/* THE FOLLOWING 20 TRANSITIONS ARE FRDH STATES U=l l /

Nl.M.u~I~ = 1 THEN DO; /* x500 */
W = 1 THEN DO; IF
P(I,IlJ = (P-i’D-PDX-3J*FPi
G(I,I2J = t H-JIO-HDX J*FtJ;
9(1,13J = (B-BO-2 l*FB;
W I ,I4 J = 2*(P-PO-POXtJJ-HD-HDX-3 J*FG t 4*FGE;
WIsIFAILJ = 2*FP+2*FBt4*FGD;
EM);

IF MI = 1 THEN DO;
GTI,Ill = (P-PO-POXJ*FPi
G(I,I2J = (H-HO-HDX-3J*FJJ;
w1,131 = (B-BO-2 J*FB;
G(I,I4J = 2*(P-PO-PDX+H-HD-JGJX-3l*F6 t 4*F6E;
GLI,IFAILJ = 2*FH+2*FBt4*FGDi
END;

IF BU = 1 THEN DO;
G~IsIlJ = (l-2/5X)*(P-PD-PDX J*FP:
$(1,12J = (I-2/-BXJ*(H-HD-HOXJ*FH;
GLIII3J = (5BO-lJ*FB - 6*FB/BX;
G(III4J = (2-4/BXJr(P-PO-POX+H-W-HDXJ*FG t (4/8XJ*(P-PD-FDXtJi-HD-t5JXJ*FGE;
WI,IFAILJ = (3/BXJ*(2*FBt2*(P-PD-FDXJ*FP/3 t t*Lll-HD-JiDXJ*FW3 t

4WP-PD-PDXtJi-tlO+JDXJ*FGD/3J;
END;

IF 6U = 1 THEN DO;
P(I,IlJ = (P-PO-POX-P/(PtHJ J*FP;
9(1,12J = (H-JID-HDX-W(PttlJJ*FH;
G(I.13J = (I)-SO-tJ*FBi
G(IrI4J q 2W P-PO-PDXtJl-JQ-HDX J*F6 - f 4*FGEtFGD J i
G(I,IFAILJ = 4tfFGD t FGE t P*FP/(PtJlJ t JJ*FIWPttiJ t 2*FBi

209

PL/I OPTItiIZING COtlPILER STATES2: PROCEDURE OPTIONS(tlAINt;
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAHBRIOGE, MSSACHUSETTS

NtlBR LEVEL NEST

18600 1 1234
1 123

18700 1 123
1 123

18800 1 123
1 12

18900 1 12
1 12
1 12
1 12

19100 1 12
1 12
1 12
1 12

19400 1 12
19500 1 12

1 12
1 12
1 12
1 12

19800 1 12
19900 1 123
20000 1 123
20100 1 123
20200 1 123
20300 1 123
20400 1 123
20500 1 123

1 123
20700 1 123

1 123
20800 1 123
20900 1 123
21000 1 123

1 12
21100 1 12
21200 1 123
21300 1 123
21400 1 123
21500 1 123
21600 1 123
21700 1 123
21800 1 123

1 123
1 123
1 123

22100 1 123
22200 1 123
22300 1 123
22400 1 123

1 12
22500 1 12
22600 1 123
22700 1 12.3
22800 1 123

x500: END i

IF NUH.U(It>O THEN GO TO RECOVER; ELSE GO TO X1000;

/* THE FOLLOWING ARE TRANSITIONS FROM STATES U=2 OR 0=3

S-FAIL:

OR UtD=3 TO SYSTEM FAIL STATE */

Q(I,IFAIL) = (P-PO-POX-PUl*FP t tH-HD-HOX-tlUt*Ftl + (B-BO-BU)*FB
+ 2*(P-PO-POX-PUttI-tlO-tlOX-tlUt*FG;

PUT OATA(Q(IsIFAILtt SKIP(l);
IF NUll.U(It>O THEN GO TO RECOVER; ELSE GO TO X1000;

two;

PUT OATA~Q~I,I1~,Q~I,I2~,Q~I,f3~,QfI,I4~rQ~I,IFAIL~~ SKIP(l);

/* THE FOLLOWING TRANSITIONS TAKE PLACE WHEN A FAULT IS DETECTED
AND THE SYSTEH RECOIJFIGURES */

RECOVER: IF PU>O THEN DO;
PU = PU-1;
PO = POtl;
ZPU = PUG
ZPO = PO;
PU q pu+1;
PD = PD-1;
WORD1 = SUBSTR(ZPU.4tt ISLlBSTR(STATE(It,2,3ti 1

SL’BSTR(ZPO,4tiiSUBSTR(STATE(It,6,3t;
11 = SNUM UOROl);

Q(I,Il) = PU*RP;
PUT OATA(Q(I,Il)) SKIP(l);
END;

IF tlU>O THEN 00;
MU = w-1;
MD = not1;
ztlu = tlu;
zno = no;
MU = nut1;
MD = MO-l;
WORD2 = SUBSTR(STATE(It,l,lt~~SUBSTR(ZtlU,4)11

SUBSTR(STATE(It,3,3tI ~SUBSTR(ZllO,4t~ I
SUBSTR(STATE(It,7,2);

12 = SNUfl(WORD2 1 i
Q(I.12) = tlU*Rtl;
PUT OATA(Q(I,IP)) SKIP(l);
END ;

IF BU>O THEN 00;
BU = BU-1;
BD = @Otl;
ZBU = BU;

210

- __ ..-

PL/I OPTIHIZING COilPILER STATES2: PROCEDURE OPTIONS(tlAIN);
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, FlASSACHUSETTS

NHBR LEVEL NEST

22900 1 123
23000 1 123
23100 1 123
23200 1 123

1 123
1 123

23500 1 123
23600 1 123
23700 1 123
23800 1 123

1 12

ZBO = BO;
BU = BUtl;
00 = BD-1;
WORD3 = SUBSTR(STATE(I),l,2tiISUBSTR(ZBU,4)ii

SUBSTR(STATE(I),4,3)ltSUBSTRfZBO,41I1
SUSSTR(STATE(I),8,1);

13 = SNUtl(WORD3 1;
Q(I,I31 = BUXRB;
PUT DATA(Q(I,I3)) SKIP(l);
END ;

-IF 23900 1 12
24000 1 123
24100 1 123
24200 1 123
24300 1 123
24400 1 123
24500 1 123
24600 1 123

1 123
24800 1 123

1 123
24900 1 123
25000 1 123
25100 1 123 i

1 12
25200 1 12

11
11
11

25400 1 1
25500 1 1
25600 1 12
25700 1 12
25800 1 123
25900 1 123

1 12
26000 1 12
26100 1 12
26200 1 12

11
11
11

26400 1 1
26500 1 1
26600 1 1
26700 1 1
26800 1 1
26900 1 12

1 12
1 12 /* COtlPLJTE NEW P VECTOR */

x1000: END;

GU>O THEN 00;
GU = GU-1;
GO = GDtl;
ZGU = GU;
ZGD = GD;
GU = GU+l;
GO .= GO-l;
WORD4 = SUBSTR(STATE(I),1,3)IiSUBSTR(ZGU,4)tl

SUBSTR~STATE(I),5,3)~~SUBSTR(ZGO,4);
14 = SNlJtl(WDRD4);

Q(I,I4) = GU*RG; -
PUT DATA(Q(I,I4)) SKIP(l);
END ;

/* tlAKE THE DIAGONAL ELEMENTS OF 9 SUCH THAT ROWS OF 9 SUM TO

Q = Q*OELTA/3600000.; /*DELTA IS IN tlILLISECONDS*/
DO I = 1 TO 146;

A = O;,
00 J = 1 TO 146;

A = A + Q(I,Jt;
END ;

Q(I,I) = 1 - A;
PUT OATA(Q(I,I)) SKIP(l);
END;

/* INITIALIZE P VECTOR */

SP = 0;
SP11) = 1;
TIME = 0;
NSKIPl = NSKIP;
00 K q 1 TO ITER;

TIME = TIHEtOELTA;

211

UNIT&

..- --.-___c__ .-. .
‘j .:>:* r ,: . :,

. ,::i
_. .., .,,. ,\ .1’

-. __ ---. -----.------- -._

PLY1 OPTIflIZING COMPILER STATESL: PROCEDURE OPTIONS~HAIN);
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, MASSACHUSETTS

NHBR LEVEL NEST

27100
27200
27300
27400
27500
27600

27700
27800
27900
28000
28100
28200
28300
28400
28500
28600
28700
28800
28900
29000
29100
29200
29300
29400
29500

29600
29700
29800
29900

30100
30200
30300
30400
30500

30600

30700
30800
30900
31000

31200

31300

31400

1 12
1 12
1 123
1 1234
1 1234
1 123
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 123
1 123
1 123
1 123
1 123
1 123
1 123
1 123
1 123
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
1 12
11
11
1 12
1 12
11
1
1
1
1
2
2
2
2

PX q 0;
DO I = 1 TO 146;

DO J = 1 TO 146;
PXCI) = P(J,I)*SP(Jl t PX(I);
ENDi

END;

SP = Px;
NSKIPl q NSKIPl-1;
IF(NSKIPl>O) THEN GO TO X2500;
NSKIPl = NSKIP;
PGDDD = SP(1); PFAIL = SP(146); PSUCCESS = l-SP(146);
PO1 = 0; PlO = 0;
P20 = 0; Pll = 0;
PO2 = 0:
P12 = 0; P21 = 0; PO3 q 0;
DO I=2 TO 145;

IF NUn.U(I)=l & NUM.D~II=O THEN PlO = PlOtSP(1);
IF NUtl.lJ(I)=O & NlJfl.D(I)=l THEN PO1 = POl+SP(I);
IF NUll.U(1)=2 & NUH.D(I)=O THEN P20 q PPOtSP(1);
IF kwn.utr)=i b hUH.D(II=l THEN P11 = PlltsP(Il;
IF NUtl.U(I)=O & NUtl.D(I)=2 THEN PO2 q PO2tSP(Ili
IF NUH.U(I)=l & NUIl.D(1)=2 THEN P12 = P12tSP(I);
IF NLM.U(11=2 & NUtl.D(Il=l THEN P21 = PPltSP(1);
IF Nun.urI)=o L NUPI.DII)=~ THEN ~03 = p03tspfr);
END ;

Pl = PlotPol;
P2 = P2o+P11tPo2;
P3 = P2l+Pl2tPo3;
PUT EDIT(‘SYSTEn RELIABILITY STATISTICS AT TItiE = ‘,TftiE,’ IISEC., STEP = ‘t

DELTA. ’ IISEC.‘) (PAGE,LINE~2),A,F~lO)rA,F(lO),A)i
PUT DATA(PGODD) SKIP(41; PUT DATACPFAIL) SKIP(2); PUT DATAfPSUCCESSl SKIP(21;
PUT DATA(P1) SKIPIPI; PUT DATAIP2) SKIP(P); PUT DATA(P3) SKIP(P);
PUT DATA(P10) SKIP(4); PUT DATAfPOl) SKIPlO);
PUT DATAcP20) SKIP(41; PUT DATA(Pl1) SKIP(2); PUT DATA(PO2) SKIP(t);
PUT DATA(P21) SKIP(4); PUT DATA(Pl2) SKIP(Z); PUT DATA(P03) SKIP(2);

x2500: END;

IF N=NUHLODP THEN DO;
PUT DATA(
END;

END;

/* FUNCTION STATE NUMBER */

.sHun: PROCEDURE(WORDX1;

DCL WORDX CHAR(B);

J = 0;

212

_ ..-- --_I_
._ --:

---_c_-_ - __c---__*_ -- ._.- ~.-. r __-.__-

I~ :
. -, .-

,

PI./1 CtPTIttIZING COMPILER STATES;!: PROCEDURE OPTIONS~HAINl;
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAHBRIDGE, MASSACHUSETTS

NIIBR LEVEL NEST

31500 2
31600 2 1

21
31800 2 1

31900 f
32000 2

1
32100 1

00 Jl = 128,64,32,16,8,4,2,1;
IF JtJ1<145 THEN

IF WORDX>=STATE(JtJl) THEN J=JtJl;
END; \

RETURN(J1;
END SNUlj;

END STATESL;

213

-
,,

“.--.-.
.’

I

APPENDIX II

The following program, 'Cardsfj', solves the multiprocessor
Markov model described in Section 5.4. This program is similar to
"States. The only major difference is that it solves a simpler ll-state
model. In addition, a variable time-step is used to update the state
probability vector. The program accepts the following additional
input variables that are different from those used by the preceding
program.

Nl,N2,NSKIPl,NSKIP2: The program, Cards5, first updates the
state probability vector Nl times using a time-step Delta milliseconds
and prints the results every NSKIPl iterations.

Then it updates the vector N2 times using a time-step 4 Delta
milliseconds and prints the results every NSKIPZ iterations.

The other input and output variables for Cards5 are same as
those for "States'! A listing of the Cards5 program follows.

214

PL/I OPTInIZING COMPILER CARD%: PROCEDURE OPTIDNSLHAIN);
DRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, IIASSACHWETTS

SOURCE LISTING

NHBR LEVEL NEST

100 CARDS5 : PROCEDURE OPTIONSf MAIN 1;

1
1
1
1
1
1
1
1
1
1
1

:
1
1
1

1'
1
1
1
1
1
1
1
1
1
1
1
1
1

2200 1
1

2300 1
2400 1
2500 1
2600 1
2700 1

/*

/*

/*

/*

/I

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

THIS PROGRAIl SOLVES A CARDS HARKOV MODEL FOR LACK OF */

PERFECT COVERAGE. SYSTEM STATE PROBABILITIES ARE */

COHPUTED AS A FUNCTION OF TIME. THIS FlODEL IS AN ll-STATE */

IIODEL USED FOR HARD FAILURE ANALYSIS. */

DEFINITIONS */

Q = STATE TRANSITION MATRIX (WITH EACH ROY SUMHING TO UNITY */

SP = STATE PROBABILITY VACTOR */

PX = INTERtVEOIATE STATE PROB. VECTOR (WORK SPACE) */

L = DItlENSION OF 9, SP AND PX */

DELTA = INITIAL TIME STEP FOR ITERATIVE SOLUTION */

TIME = TIflE OF SOLUTION */

Nl = GITERATIONS FOR WHICH TIM-STEP IS DELTA */

N2 = *ITERATIONS FOR WHICH TIME-STEP IS DELTA*MH */

NSKIPl q SKIP NSKIPl ITERATIONS BETWEEN PRINTING RESULTS FOR */

FIRST Nl ITERATIONS*/

NSKIP2 = SKIP NSKIPL ITERATIONS BETWEEN PRINTING RESULTS FOR */

NEXT N2 ITERATIONS */

ALGORITHM */

SP(N+l) q Q*SP(N)*DELTA */

DCL Q(ll,ll) FLOAT DECItlALt 16 1 i

DCL SP(l1) FLOAT DECItlAL(16);
DCL PX(l1) FLOAT OECIllALf 16 1;
DCL (A,PGOOD,PSUCCESS) FLOAT DECIHAL(16);
DCL T P,H,B) FIXED DECItlALt 2 1 i
DCL (DELTA,TITlE) FIXED DECIFlAL(lO)i

215

PL/I OPTIHIZING COMPILER CARDSI: PROCEDURE OPTIONS(HAIN);
DRAPER LAB LISTING FORtiATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, HASSACHUSETTS

NIIBR LEVEL NEST

2800 1 DCL TNl,N2) FIXED DECITlAL(6 1;

1
3200 1
3300 1

1
3500 1

11
3700 1 1
3800 1 1
3900 1 1
4000 1 1
4100 1 1
4200 1 1
4300 1 1
4400 1 1
4500 1 1
4600 1 1

11
4800 1 1 9 = 0;
4900 1 1 L = 11;

6400 1 1

11
5300 1 1
5400 1 1

6500 1 1

5500 1 1
11

5700 1 1
5800 1 1
5900 1 1
6000 1 1

11
6200 1 1
6300 1 1

11
6700 1 1
6800 1 1
6900 1 1
7000 1 1

11
7200 1 1
7300 1 1
7400 1 1
7500 1 1
7600 1 1
7700 1 1

/* READ-IN DATA */

GET OATAt NUTILOOP 1;
PUT OATAt NUHLOOP 1;

NUH: DO N = 1 TO NUMLOOP;

PUT EDIT(‘N = ‘,NT (PAGE,LINE(2),A,F(21);
GET DATA(P,tl,B);
PUT OATAf P,tl,B) SKIPT 2 1;
GET OATA(FP,Ftl,FB);
PUT DATA(FP,F?lrFB) SKIPIP);
GET DATA(RP,RtlrRB);
PUT DATA(RP,RflsRB) SKIP(Z);
GET DATA(N1,N2,DELTA,NSKIPi,NSKIP2,tEl);
PUT DATA(Nl,NZ,DELTA) SKIP(L);
PUT DATA(NSKIPl,NSKIPZ,Htl) SKIP(2);

/* FAILURE TRANSITIONS ------------- RECOVERY

Q(1,2) = P+FP; Q(2,l) = RP;
Q(l.3) = M*FM; Q(3,l) = Rtl;
Q(1.4) = B+FB; Q(4.1) = RB;

Q(2,5) = (P-3)*FP; Q(5,21 = 2*RPi
Q(2,63 = tl*FH; 9(6,2) = RM;
Q(2,lO) = (B-2)*FB;
Q(2,ll) = 2*(FPtFB)i

Q(10.2) = RB;

Q(3,8) = (8-2l*FB; Q(8,3) q RB;

Q(3.6 I

Q(3,ll) = Z*(Fll+FB);

= P*FP; Q(6,3) = RP;
Q(3,7) = (!+3)*Ftl; Q(7,3) = 2WRtl;

TRANSITIONS */

Q(4,8) = Tl.-2./B)*tT*Ffli QT8,4) = RR;
Q(4,9) = (B-l.-C./B)*FBi Q(9,4) = 2*RB;
Q(4,lO) = (l.-2./B)*P*FP; Q(lO,4) q RP;
Q(4.11) = (2./B)w(P*FPtM*Fnt3*FB);/*(3/B)((2/3)+P+FPt(2/3)*H*F~t2FB*/

Q(5rll) = TP-2)*FP + H*F?l + B*FBi
P(6,ll) = (P-ll*FP t (tl-l)*FM t B*FB;
Q(7,ll) = P+FP t (tl-2)*FH t B*FB;
Q(8,ll) = PWFP t (H-1)*Ftl ‘t (B-l)*FB;
Q(9.11) = PWFP t tl*Ffl t (B-2MFB;
Q(lO,llJ = (P-l l*FP t H+Ffl t (B-1)*FB;

216

'L/I OPTINIZING CCMPILER CARDSI: PROCEDURE OPTIONSCNAINt;
IRAPER LAB LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. C-RIDGE, NASSACHUSETTS

NNBR LEVEL NEST

8000
8100
8200

11
11
11
11

: :
11
11
11
1 12
1 12
1 123
1 123
1 12
1 12
1 12
1 123
1 123
1 123
1 1234
1 1234
1 123
1 123
1 123
1 123
1 12
1 12
1 12
1 12
1 123
1 123
1 123
1 12
1 12
1 123
1 123
1 123
1 12
1 12
1 12
1 12
1 12
1 123
1 123
1 123
1 123
1 123
1 123
1 1234
1 12345
1 12345
1 1234

/* INITIALIZE P VECTOR l /

SP = 0;
SPTlT q 1;
TIME = 0;

8400 9 = 9*DELTA/3600000.; /*DELTA IS IN MSECSW

8600
8700
8800
8900
9000

Lt: 00 K2 q 1 TO 2;
IF K2>1 THEN IF N2=0 THEN 60fO L5;
IF K2>1 THEN DO; /* INCRENENT STEP-SIZE NM-FOLD SECOND TIIIEW

6 q cf*tm;

END;

9100
9200
9300
9400
9500
9600
9700

PUT EDIT(' ‘1 tSKIPt4t.A);
DO I q 1 TO L;

P(I.1) = 0;
A q oi /* COMPUTE DIAGONAL ELEMENTS OF Q SUCH THAT ROWS SUN TO I*/
DO J = 1 f0 Li

A = AtQl1.J);
ENDi

9800
9900

10000

Q(I,I) = 1.-A;
PUT DATA((I(I,I)) SKIP(l);
END;

/* PUT DATAlQt */

10200
10300
10400
10500

L8: IF K2-1 THEN DO;
Ml q Nli
NSKIP = NSKIPI;
END;

10600
10700
10800
10900

ELSE DO;
Ml = N2;
NSKIP = NSKIPZ;
ENDi

11000
11100

NSKIPS = NSKIP;
Jl = 1;

11300
11400

Ll: DO Kl = 1 TO Ill;
TIUE = TIflEtDELTA;

/* COHPUTE NEW P VECTDR l /

11600
11700
11800
11900
12000
12100

PX = 0;
00 I-l TO Li

DO J=l TO L;
PX(I) = QlJ,I)*SP(J) + PXIIti
END;

END;

217

PL/I OPTIMIZING COMPILER CARDSI: PROCEDURE OPTIONSLMAIN);
DRAPER LAG LISTING FORMATTER CHARLES STARK DRAPER LABORATORY, INC. CAMBRIDGE, MASSACHUSETTS

NNBR LEVEL NEST

12200 1 123
12300 1 123
12400 1 123
12500 1 123
12600 1 123
12700 1 123
12800 1 123
12900 1 123
13000 1 123

1 123
13200 1 123
13300 1 123
13400 1 123

1 123
13600 1 123

1 123
1 123

13800 1 123 x99:
1 123

14000 1 123
14100 1 123
14200 1 123

SP-Px;
NSKIP3 = NSKIP3-1;
IF (NSKIP3>0) THEN GOT0 X100;
NSKIP3 = NSKIP;
PGOOO = SP(1) i
PFAIL = SPlll);
PSUCCESS = l.-SPLll);
;; = sqL2)+sPI3)+sPl4);

= SP(5)+SPl6)+SP(7)+SP18)+SPo+SP0;

Jl = Jl-1;
IF I Jl>O) THEN GOT0 X99;
Jl = 12; /* PRINT 12 SETS OF DATA OH A PAGE */

PUT EDITL’STEP-SIZE q ‘,DELTA,’ MSEC, N q 'rN) LPAGE,LINE(2),A,F(lO)r
AIF(P

SECONDS q TIME/lOOO;
IHOURS = SECONDW3600;
IMINUTES q (SECONDS-3600*IHOURS)/bO;
ISECONDS = SECONDS-3600rIHOURS-6O*IMINUTES;
PUT EDITL'TIHE q ',IHOURS,' HR ',IMINUTES,' MIN ', ISECONDS,

’ SEC PGOOD = ‘,PGOOD,’ PFAIL = 'rPFA1l.v' PSUCCESS = ‘,PSUCCESS)
~SKIP~2~,A.Fl2~,A,F~2~,A,F~2~,A,E~llr5)rA,E~ll,5~,A,E~ll,5~~;

PUT EDITl'Pl = ',Pl,' P2 = ',P2) (SKIP(1),COLUMN(32).A,ELll,5),
A,ELllr5));

14300 1 123
1 123
1 123

14600 1 123
1 123
1 123

14800 1 123 x100:
1 12

14900 1 12
15000 1 12
15100 1 12

11
15200 1 1

1
15300 1

END Lli

DELTA = DELTA*MM;
PUT DATAL SP 1 i
END L2;

END NUM;

END CARDSS;

-

REFERENCES

1. Smith, T.B., "A Damage-and-Fault-Tolerant Input/Output Network,"
IEEE Transactions on Computers, Vol. C-24 No. 5, May, 1975.

2. Hopkins, A.L. and T.B. Smith, "The Architectural Elements of a
Symmetric Fault-Tolerant Multiprocessor," IEEE Transactions on
Computers, Vol. C-24 No. 5, May, 1975.

3. Pierce, W.H., Failure-Tolerant Computer Design, Academic Press,
New York, 1965, pp. 78-114.

4. Ratner, R.S., E.B. Shapiro, H.M. Zeidler, S.E. Wahlstrom,
C.B. Clark, and J. Go:ldberg, "Design of a Fault-Tolerant
Airborne Digital Compiter, .Vol. II - Compuational Requirements
and Technology." NAS&CR-132253, 1973.

5. Hamilton, M., and S..Ze'ldin, "Higher Order Software - A
Methodology for Defining Software," IEEE Trans. Softw. Eng.
Vol. SE-2, No. 1, March, 1976.

6. Lala, J., "Performance Evaluation of a Multiprocesqor in a
Real Time Environment," MIT Doctoral Thesis. Draper Laboratory
Report T-622, February, 1976.

7. McKenna, J.F., "Demonstration and Evaluation of a Fault-Tolerant
Input/Output Network," .C.S. Draper Laboratory, Inc. Report
NO. R-918, September 1975.

219

